Dextran as internal calibrant for N-glycan analysis by liquid chromatography coupled to ion mobility-mass spectrometry.

Calibration Collision cross sections Glucose units HILIC Ion mobility spectrometry N-Glycan analysis

Journal

Analytical and bioanalytical chemistry
ISSN: 1618-2650
Titre abrégé: Anal Bioanal Chem
Pays: Germany
ID NLM: 101134327

Informations de publication

Date de publication:
Jul 2022
Historique:
received: 07 03 2022
accepted: 16 05 2022
revised: 02 05 2022
pubmed: 26 5 2022
medline: 29 6 2022
entrez: 25 5 2022
Statut: ppublish

Résumé

LC-MS is one of the most important tools for the comprehensive characterization of N-glycans. Despite many efforts to speed up glycan analysis via optimized sample preparation (e.g., faster enzyme digestion in combination with instant or rapid labeling dyes), a major bottleneck remains the rather long measurement times of HILIC chromatography. Further complication arises from the necessity to concomitantly calibrate with an external standard to allow for accurate retention times and the conversion into more robust GU values. Here we demonstrate the use of an internal calibration strategy for HILIC chromatography to speed up glycan analysis. By reducing the number of utilized dextran oligosaccharides, the calibrant can be spiked directly into the sample such that external calibration runs are no longer required. The minimized dextran ladder shows accurate GU calibration with a minor deviation of well below 1% and can be applied without modifications in sample preparation or data processing. We further demonstrate the simultaneous use of the minimized dextran ladder as calibrant for the estimation of CCS values in traveling wave ion mobility spectrometry. In both cases, the minimized dextran ladder enables the measurement of calibrant and sample in a single HPLC run without losing information or accuracy.

Identifiants

pubmed: 35614231
doi: 10.1007/s00216-022-04133-0
pii: 10.1007/s00216-022-04133-0
pmc: PMC9234027
doi:

Substances chimiques

Dextrans 0
Polysaccharides 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

5023-5031

Subventions

Organisme : Deutsche Forschungsgemeinschaft
ID : FOR 2177 / 251124697
Organisme : Deutsche Forschungsgemeinschaft
ID : SFB 1449 / 431232613

Informations de copyright

© 2022. The Author(s).

Références

Trends Cancer. 2020 Sep;6(9):757-766
pubmed: 32381431
Anal Chem. 2016 Dec 6;88(23):11364-11367
pubmed: 27813405
Glycoconj J. 2016 Jun;33(3):399-404
pubmed: 26314736
Glycobiology. 2020 Mar 20;30(4):226-240
pubmed: 31281930
Methods Mol Biol. 2017;1503:235-264
pubmed: 27743371
Anal Chem. 2017 Nov 21;89(22):12176-12184
pubmed: 29039942
Angew Chem Int Ed Engl. 2017 Jul 10;56(29):8342-8349
pubmed: 28436597
Glycobiology. 2016 Feb;26(2):111-28
pubmed: 26518624
J Chromatogr A. 2017 Oct 20;1520:75-82
pubmed: 28864110
Chem Commun (Camb). 2016 Mar 21;52(23):4381-4
pubmed: 26926577
Electrophoresis. 2017 Sep;38(17):2100-2114
pubmed: 28370073
MAbs. 2017 Nov/Dec;9(8):1349-1359
pubmed: 28895795
Anal Chem. 2017 Sep 5;89(17):9048-9055
pubmed: 28763190
Analyst. 2016 Feb 7;141(3):884-91
pubmed: 26739109
Anal Chem. 2017 Feb 21;89(4):2318-2325
pubmed: 28192913
Analyst. 2019 Jun 7;144(11):3601-3612
pubmed: 31065629
Glycobiology. 2015 Oct;25(10):1125-33
pubmed: 26088564
Anal Biochem. 2008 May 1;376(1):1-12
pubmed: 18194658
J Chromatogr A. 2018 Jun 15;1554:61-70
pubmed: 29706400
Analyst. 2017 Nov 20;142(23):4446-4455
pubmed: 29085933
Anal Chem. 2007 Jul 1;79(13):5051-7
pubmed: 17539604
Anal Chem. 2014 Nov 4;86(21):10789-95
pubmed: 25268221
Anal Biochem. 1995 Sep 20;230(2):229-38
pubmed: 7503412
Curr Opin Chem Biol. 2018 Feb;42:16-24
pubmed: 29107930
Chem Rev. 2022 Apr 27;122(8):7840-7908
pubmed: 34491038
Nature. 2015 Oct 8;526(7572):241-4
pubmed: 26416727
Bioinformatics. 2008 May 1;24(9):1214-6
pubmed: 18344517
Anal Chem. 2015;87(10):5401-9
pubmed: 25927596
Biologicals. 2018 Mar;52:1-11
pubmed: 29239840
Analyst. 2020 Sep 28;145(19):6313-6333
pubmed: 32716422
J Pharm Biomed Anal. 2010 Nov 2;53(3):315-24
pubmed: 20418045
Analyst. 2019 Sep 7;144(17):5292-5298
pubmed: 31380551
Bioinformatics. 2018 Sep 15;34(18):3231-3232
pubmed: 29897488
Glycobiology. 2017 Jan;27(1):3-49
pubmed: 27558841

Auteurs

Christian Manz (C)

Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany.
Department of Chemistry and Biochemistry, Freie Universität Berlin, Altensteinstr. 23A, 14195, Berlin, Germany.
Analytical Chemistry, CMC, Silence Therapeutics GmbH, Robert-Rössle-Str. 10, 13125, Berlin, Germany.

Michael Götze (M)

Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany.
Department of Chemistry and Biochemistry, Freie Universität Berlin, Altensteinstr. 23A, 14195, Berlin, Germany.

Clemens Frank (C)

Department of Chemistry and Biochemistry, Freie Universität Berlin, Altensteinstr. 23A, 14195, Berlin, Germany.

Andreas Zappe (A)

Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany.
Department of Chemistry and Biochemistry, Freie Universität Berlin, Altensteinstr. 23A, 14195, Berlin, Germany.

Kevin Pagel (K)

Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany. kevin.pagel@fu-berlin.de.
Department of Chemistry and Biochemistry, Freie Universität Berlin, Altensteinstr. 23A, 14195, Berlin, Germany. kevin.pagel@fu-berlin.de.

Articles similaires

Animals Flax Chickens Dietary Supplements Endo-1,4-beta Xylanases
Humans Pisum sativum Breast Neoplasms Tandem Mass Spectrometry Plant Extracts
Humans Breast Neoplasms Female Mass Spectrometry Adipose Tissue
Klebsiella pneumoniae Volatile Organic Compounds Metabolomics Ion Mobility Spectrometry Bacterial Proteins

Classifications MeSH