Use of CRISPR/Cas9 with homology-directed repair to silence the human topoisomerase IIα intron-19 5' splice site: Generation of etoposide resistance in human leukemia K562 cells.
Journal
PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081
Informations de publication
Date de publication:
2022
2022
Historique:
received:
06
03
2022
accepted:
06
05
2022
entrez:
26
5
2022
pubmed:
27
5
2022
medline:
31
5
2022
Statut:
epublish
Résumé
DNA Topoisomerase IIα (TOP2α/170) is an enzyme essential for proliferating cells. For rapidly multiplying malignancies, this has made TOP2α/170 an important target for etoposide and other clinically active anticancer drugs. Efficacy of these agents is often limited by chemoresistance related to alterations in TOP2α/170 expression levels. Our laboratory recently demonstrated reduced levels of TOP2α/170 and overexpression of a C-terminal truncated 90-kDa isoform, TOP2α/90, due to intronic polyadenylation (IPA; within intron 19) in an acquired etoposide-resistant K562 clonal cell line, K/VP.5. We previously reported that this isoform heterodimerized with TOP2α/170 and was a determinant of acquired resistance to etoposide. Optimization of the weak TOP2α exon 19/intron 19 5' splice site in drug-resistant K/VP.5 cells by gene-editing restored TOP2α/170 levels, diminished TOP2α/90 expression, and circumvented drug resistance. Conversely, in the present study, silencing of the exon 19/intron 19 5' splice site in parental K562 cells by CRISPR/Cas9 with homology-directed repair (HDR), and thereby forcing intron 19 retention, was used to induce resistance by disrupting normal RNA processing (i.e., gene knockout), and to further evaluate the role of TOP2α/170 and TOP2α/90 isoforms as resistance determinants. Gene-edited clones were identified by quantitative polymerase chain reaction (qPCR) and verified by Sanger sequencing. TOP2α/170 mRNA/protein expression levels were attenuated in the TOP2α gene-edited clones which resulted in resistance to etoposide as assessed by reduced etoposide-induced DNA damage (γH2AX, Comet assays) and growth inhibition. RNA-seq and qPCR studies suggested that intron 19 retention leads to decreased TOP2α/170 expression by degradation of the TOP2α edited mRNA transcripts. Forced expression of TOP2α/90 in the gene-edited K562 cells further decreased etoposide-induced DNA damage in support of a dominant negative role for this truncated isoform. Together results support the important role of both TOP2α/170 and TOP2α/90 as determinants of sensitivity/resistance to TOP2α-targeting agents.
Identifiants
pubmed: 35617303
doi: 10.1371/journal.pone.0265794
pii: PONE-D-22-06733
pmc: PMC9135202
doi:
Substances chimiques
Antigens, Neoplasm
0
RNA Splice Sites
0
RNA, Messenger
0
Etoposide
6PLQ3CP4P3
DNA Topoisomerases, Type II
EC 5.99.1.3
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0265794Subventions
Organisme : NCI NIH HHS
ID : R01 CA226906
Pays : United States
Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
Nat Genet. 2008 Dec;40(12):1413-5
pubmed: 18978789
Cell. 1980 Jun;20(2):303-12
pubmed: 6771019
Annu Rev Biochem. 2015;84:291-323
pubmed: 25784052
Methods Mol Biol. 1999;94:253-68
pubmed: 12844881
Biochem J. 2011 Jan 1;433(1):43-50
pubmed: 20979579
J Cell Sci. 2016 Feb 1;129(3):461-7
pubmed: 26787741
J Biol Chem. 1995 Dec 1;270(48):28995-9003
pubmed: 7499432
Nature. 2016 Dec 8;540(7632):276-279
pubmed: 27894125
Bioinformatics. 2014 Apr 1;30(7):923-30
pubmed: 24227677
FASEB J. 2007 Dec;21(14):3885-95
pubmed: 17615362
Cell. 1980 Jun;20(2):293-301
pubmed: 6771018
Nat Rev Mol Cell Biol. 2011 Nov 23;12(12):827-41
pubmed: 22108601
Mol Cell. 2019 Oct 17;76(2):329-345
pubmed: 31626751
Science. 2012 Dec 21;338(6114):1587-93
pubmed: 23258890
Nucleic Acids Res. 2016 Jul 8;44(W1):W160-5
pubmed: 27079975
Gene. 1998 Oct 23;221(2):255-66
pubmed: 9795238
Neuron. 2011 Mar 10;69(5):877-84
pubmed: 21382548
Genome Biol. 2015 Sep 21;16:201
pubmed: 26392272
Biochem Cell Biol. 2013 Dec;91(6):506-12
pubmed: 24219293
Redox Biol. 2014 Jan 09;2:457-65
pubmed: 24624335
Genes Dev. 2015 Jan 1;29(1):63-80
pubmed: 25561496
PLoS Genet. 2013;9(7):e1003613
pubmed: 23874216
Biochim Biophys Acta. 2000 Nov 15;1494(1-2):137-43
pubmed: 11072076
Nat Rev Mol Cell Biol. 2017 Jan;18(1):18-30
pubmed: 27677860
Cancer Res. 1981 Jan;41(1):237-43
pubmed: 6934848
Proc Natl Acad Sci U S A. 2012 Sep 25;109(39):E2579-86
pubmed: 22949671
J Pharmacol Exp Ther. 2017 Jan;360(1):152-163
pubmed: 27974648
EMBO Rep. 2005 Dec;6(12):1182-7
pubmed: 16179943
Proc Natl Acad Sci U S A. 2010 Dec 7;107(49):21152-7
pubmed: 21078998
Biochemistry. 1997 May 13;36(19):5868-77
pubmed: 9153428
Annu Rev Biochem. 2013;82:139-70
pubmed: 23495937
Genome Res. 2007 Feb;17(2):156-65
pubmed: 17210931
Nat Biotechnol. 2013 Sep;31(9):827-32
pubmed: 23873081
Front Pharmacol. 2013 Aug 01;4:89
pubmed: 23914174
Mol Biol Cell. 2016 Dec 1;27(24):3903-3912
pubmed: 27708137
Nat Struct Mol Biol. 2012 Nov;19(11):1147-54
pubmed: 23022727
Nucleic Acids Res. 2010 Aug;38(15):5130-40
pubmed: 20385595
Nucleic Acids Res. 2009 Feb;37(3):738-48
pubmed: 19042970
Nucleic Acids Res. 2015 Apr 20;43(7):e47
pubmed: 25605792
Nucleic Acids Res. 2019 Dec 16;47(22):11497-11513
pubmed: 31724706
Biochem J. 2018 Jan 23;475(2):373-398
pubmed: 29363591
Genome Res. 2014 Jun;24(6):1012-9
pubmed: 24696461
Mol Pharmacol. 2018 May;93(5):515-525
pubmed: 29514855
Genes Dev. 2012 Jun 1;26(11):1209-23
pubmed: 22661231
Mol Cell. 2011 Sep 16;43(6):927-39
pubmed: 21925381
Proc Natl Acad Sci U S A. 2008 Jul 1;105(26):9053-8
pubmed: 18574145
Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):1901-6
pubmed: 18250327
PLoS Genet. 2016 Jan 05;12(1):e1005768
pubmed: 26730850
Cancer Res. 1995 May 15;55(10):2129-34
pubmed: 7743513
Biochem Pharmacol. 1993 Dec 3;46(11):2007-20
pubmed: 8267650
Nat Rev Cancer. 2009 May;9(5):338-50
pubmed: 19377506
Annu Rev Biophys. 2017 May 22;46:505-529
pubmed: 28375731
Nat Protoc. 2008;3(6):1101-8
pubmed: 18546601
Nature. 2008 Nov 27;456(7221):470-6
pubmed: 18978772
Genome Res. 2019 Mar;29(3):472-484
pubmed: 30737237
Nat Protoc. 2019 Mar;14(3):756-780
pubmed: 30710114
Cancer Drug Resist. 2020;3(2):161-170
pubmed: 32566920
J Cell Biochem. 2004 Sep 1;93(1):120-32
pubmed: 15352169
Mol Pharmacol. 2021 Mar;99(3):226-241
pubmed: 33446509
Methods Mol Biol. 2002;203:179-94
pubmed: 12073441
Cell. 2013 Feb 28;152(5):1173-83
pubmed: 23452860
Nucleic Acids Res. 2018 Mar 16;46(5):e26
pubmed: 29237010
Curr Med Chem. 2012;19(23):3900-6
pubmed: 22788766
EMBO J. 1997 Aug 15;16(16):5077-85
pubmed: 9305649
Genes Cells. 2003 Apr;8(4):393-402
pubmed: 12653966
Mutat Res. 2010 Dec 10;694(1-2):65-71
pubmed: 20851134
PLoS One. 2018 Jul 5;13(7):e0200211
pubmed: 29975766
Cancer Res. 1995 Nov 1;55(21):4962-71
pubmed: 7585537
Nat Biotechnol. 2011 Jan;29(1):24-6
pubmed: 21221095
BMC Bioinformatics. 2019 Dec 20;20(Suppl 24):670
pubmed: 31861980
Genome Res. 2014 Jan;24(1):132-41
pubmed: 24253446
Science. 2012 Aug 17;337(6096):816-21
pubmed: 22745249
Nat Methods. 2015 Apr;12(4):357-60
pubmed: 25751142
Mol Cell Biol. 2010 Apr;30(8):1878-86
pubmed: 20123971
Oncol Res. 1997;9(4):193-204
pubmed: 9268990
Trends Mol Med. 2012 Aug;18(8):472-82
pubmed: 22819011
Science. 2013 Feb 15;339(6121):823-6
pubmed: 23287722
FASEB J. 2007 May;21(7):1556-64
pubmed: 17264164
Elife. 2016 Jan 06;5:
pubmed: 26735365
J Biol Chem. 2010 Oct 15;285(42):32233-41
pubmed: 20693282
Science. 2013 Feb 15;339(6121):819-23
pubmed: 23287718
J Biol Chem. 2004 Jul 30;279(31):32897-903
pubmed: 15159391
PLoS One. 2015 Apr 24;10(4):e0124633
pubmed: 25909470
J Biotechnol. 2017 Jan 10;241:136-146
pubmed: 27845164
Cells. 2020 Feb 20;9(2):
pubmed: 32093146
Mol Cell Biol. 2012 Jan;32(2):513-26
pubmed: 22083953
J Biol Chem. 1998 Mar 6;273(10):5858-68
pubmed: 9488723
Int J Mol Sci. 2021 Jan 16;22(2):
pubmed: 33467093