AIE-Active Photosensitizers: Manipulation of Reactive Oxygen Species Generation and Applications in Photodynamic Therapy.

aggregation microenvironment aggregation-induced emission photodynamic therapy photosensitizer reactive oxygen species

Journal

Biosensors
ISSN: 2079-6374
Titre abrégé: Biosensors (Basel)
Pays: Switzerland
ID NLM: 101609191

Informations de publication

Date de publication:
18 May 2022
Historique:
received: 27 04 2022
revised: 12 05 2022
accepted: 15 05 2022
entrez: 28 5 2022
pubmed: 29 5 2022
medline: 1 6 2022
Statut: epublish

Résumé

Photodynamic therapy (PDT) is a non-invasive approach for tumor elimination that is attracting more and more attention due to the advantages of minimal side effects and high precision. In typical PDT, reactive oxygen species (ROS) generated from photosensitizers play the pivotal role, determining the efficiency of PDT. However, applications of traditional PDT were usually limited by the aggregation-caused quenching (ACQ) effect of the photosensitizers employed. Fortunately, photosensitizers with aggregation-induced emission (AIE-active photosensitizers) have been developed with biocompatibility, effective ROS generation, and superior absorption, bringing about great interest for applications in oncotherapy. In this review, we review the development of AIE-active photosensitizers and describe molecule and aggregation strategies for manipulating photosensitization. For the molecule strategy, we describe the approaches utilized for tuning ROS generation by attaching heavy atoms, constructing a donor-acceptor effect, introducing ionization, and modifying with activatable moieties. The aggregation strategy to boost ROS generation is reviewed for the first time, including consideration of the aggregation of photosensitizers, polymerization, and aggregation microenvironment manipulation. Moreover, based on AIE-active photosensitizers, the cutting-edge applications of PDT with NIR irradiated therapy, activatable therapy, hypoxic therapy, and synergistic treatment are also outlined.

Identifiants

pubmed: 35624649
pii: bios12050348
doi: 10.3390/bios12050348
pmc: PMC9139150
pii:
doi:

Substances chimiques

Photosensitizing Agents 0
Reactive Oxygen Species 0

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : National Natural Science Foundation of China
ID : 52173154, 52003023, 21905015, and 21788102
Organisme : Beijing National Laboratory for Molecular Sciences
ID : BNLMS202103

Références

Nanoscale. 2016 Oct 14;8(40):17422-17426
pubmed: 27738688
Adv Mater. 2018 Nov;30(45):e1801350
pubmed: 30066341
Chem Rev. 2014 Nov 12;114(21):10869-939
pubmed: 25260098
Front Chem. 2015 May 27;3:33
pubmed: 26075198
Org Lett. 2016 Nov 4;18(21):5664-5667
pubmed: 27750427
Chem Sci. 2021 Apr 12;12(19):6488-6506
pubmed: 34040725
Photochem Photobiol Sci. 2002 Jan;1(1):1-21
pubmed: 12659143
Chem Rev. 2015 Nov 11;115(21):11718-940
pubmed: 26492387
Angew Chem Int Ed Engl. 2020 Jul 13;59(29):11779-11783
pubmed: 32324962
Angew Chem Int Ed Engl. 2018 Nov 12;57(46):15189-15193
pubmed: 30253012
Angew Chem Int Ed Engl. 2018 Jul 26;57(31):9885-9890
pubmed: 29927036
Adv Mater. 2017 Jul;29(28):
pubmed: 28556297
Chem Commun (Camb). 2020 Sep 14;56(71):10317-10320
pubmed: 32760939
Adv Mater. 2019 Dec;31(52):e1904914
pubmed: 31696981
Front Chem. 2021 May 25;9:672917
pubmed: 34113602
Int J Biol Markers. 2008 Jul-Sep;23(3):161-8
pubmed: 18949742
Chem Soc Rev. 2016 Nov 7;45(22):6250-6269
pubmed: 27333329
Angew Chem Int Ed Engl. 2018 Aug 27;57(35):11384-11388
pubmed: 30003656
Front Chem. 2021 Apr 07;9:635344
pubmed: 33898388
Adv Mater. 2017 Sep;29(33):
pubmed: 28671732
Eur J Med Chem. 2019 Aug 1;175:72-106
pubmed: 31096157
Lancet. 1966 Aug 6;2(7458):312-5
pubmed: 4161494
Biomaterials. 2022 Jan;280:121255
pubmed: 34810034
ACS Nano. 2020 Feb 25;14(2):2183-2190
pubmed: 32023035
ChemMedChem. 2021 Aug 5;16(15):2330-2338
pubmed: 33882188
Angew Chem Int Ed Engl. 2020 Jul 13;59(29):12122-12128
pubmed: 32297412
Nat Rev Immunol. 2017 Feb;17(2):97-111
pubmed: 27748397
Adv Mater. 2018 Jun;30(26):e1801065
pubmed: 29766581
J Org Chem. 2011 Nov 4;76(21):8824-32
pubmed: 21932835
Angew Chem Int Ed Engl. 2020 Jun 15;59(25):10179-10185
pubmed: 32020721
Biomaterials. 2020 Feb;230:119635
pubmed: 31767443
Adv Mater. 2020 Sep;32(37):e2003382
pubmed: 32761671
Chem Rev. 2013 Jul 10;113(7):5071-109
pubmed: 23577659
Angew Chem Int Ed Engl. 2015 Feb 2;54(6):1780-6
pubmed: 25504495
Biochimie. 1995;77(3):147-61
pubmed: 7647106
Adv Healthc Mater. 2021 Dec;10(24):e2101177
pubmed: 34637607
Materials (Basel). 2013 Mar 06;6(3):817-840
pubmed: 28809342
Adv Healthc Mater. 2021 Dec;10(24):e2101607
pubmed: 34674386
Chem Commun (Camb). 2001 Sep 21;(18):1740-1
pubmed: 12240292
Nanoscale. 2019 Nov 7;11(41):19241-19250
pubmed: 31544188
Chem Rec. 2017 Aug;17(8):775-802
pubmed: 28042681
Nanomicro Lett. 2020 Jan 3;12(1):15
pubmed: 34138092
Adv Mater. 2014 Aug 20;26(31):5429-79
pubmed: 24975272
Adv Healthc Mater. 2021 Dec;10(24):e2101066
pubmed: 34519181
Nat Rev Cancer. 2011 Feb;11(2):85-95
pubmed: 21258394
Adv Mater. 2018 Sep;30(39):e1802105
pubmed: 30133835
Angew Chem Int Ed Engl. 2020 Jun 15;59(25):10122-10128
pubmed: 31828915
J Mater Chem B. 2013 May 14;1(18):2350-2357
pubmed: 32261069
Chem Soc Rev. 2011 Nov;40(11):5361-88
pubmed: 21799992
J Med Chem. 2020 Mar 12;63(5):1996-2012
pubmed: 32039596
Chem Sci. 2020 Mar 2;11(13):3405-3417
pubmed: 34745515
Biomater Sci. 2017 Jul 25;5(8):1500-1511
pubmed: 28681887
J Control Release. 2003 Aug 28;91(1-2):103-13
pubmed: 12932642
Angew Chem Int Ed Engl. 2020 Jun 15;59(25):9868-9886
pubmed: 32128951
Chem Sci. 2020 May 18;11(22):5735-5739
pubmed: 32864085
ACS Nano. 2021 Apr 27;15(4):7735-7743
pubmed: 33856778
Adv Mater. 2018 Aug;30(35):e1802808
pubmed: 29999559
Angew Chem Int Ed Engl. 2018 Apr 23;57(18):4891-4896
pubmed: 29451722
Angew Chem Int Ed Engl. 2021 Jun 25;60(27):14945-14953
pubmed: 33887096
ACS Nano. 2018 Aug 28;12(8):8145-8159
pubmed: 30074773
Biomaterials. 2017 Nov;144:53-59
pubmed: 28823843
ACS Appl Mater Interfaces. 2016 Aug 24;8(33):21193-200
pubmed: 27462722
J Am Chem Soc. 2004 Sep 22;126(37):11450-1
pubmed: 15366886
Chem Soc Rev. 2021 May 24;50(10):6013-6041
pubmed: 34027953
J Mater Chem B. 2018 May 7;6(17):2566-2573
pubmed: 32254475
Acta Pharm Sin B. 2020 Aug;10(8):1382-1396
pubmed: 32963938
Chemphyschem. 2005 Oct 14;6(10):2012-7
pubmed: 16208737
Acc Chem Res. 2021 Jan 5;54(1):207-220
pubmed: 33289536
ACS Nano. 2019 Oct 22;13(10):11283-11293
pubmed: 31525947
Photodiagnosis Photodyn Ther. 2021 Jun;34:102254
pubmed: 33713845
Chem Rev. 2010 May 12;110(5):2839-57
pubmed: 20104890
ACS Nano. 2020 Jan 28;14(1):620-631
pubmed: 31877023
Chem Sci. 2015 Oct 1;6(10):5824-5830
pubmed: 28791088
J Med Chem. 2012 Jan 26;55(2):924-34
pubmed: 22185340
Commun Biol. 2018 Nov 21;1:202
pubmed: 30480103
Cancers (Basel). 2011;3(2):2516-39
pubmed: 23914299
Radiat Res. 1963 Sep;20:55-70
pubmed: 14061481
Int J Hyperthermia. 1995 Mar-Apr;11(2):211-6
pubmed: 7790735
ACS Nano. 2020 Nov 16;:
pubmed: 33197171

Auteurs

Hao Yu (H)

Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.

Binjie Chen (B)

Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.

Huiming Huang (H)

Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.

Zhentao He (Z)

Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.

Jiangman Sun (J)

Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.

Guan Wang (G)

Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.

Xinggui Gu (X)

Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
Beijing National Laboratory for Molecular Sciences, Beijing 100190, China.

Ben Zhong Tang (BZ)

Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China.

Articles similaires

Biofilms Candida albicans Quorum Sensing Candida glabrata Menthol

Necroptosis as a consequence of photodynamic therapy in tumor cells.

Álvaro Carneiro de Souza, André Luiz Mencalha, Adenilson de Souza da Fonseca et al.
1.00
Photochemotherapy Humans Necroptosis Neoplasms Photosensitizing Agents
Neoplastic Stem Cells Animals Humans Aldehyde Dehydrogenase Tretinoin

Naturally derived 3-aminoquinuclidine salts as new promising therapeutic agents.

Doris Crnčević, Alma Ramić, Andreja Radman Kastelic et al.
1.00
Humans Microbial Sensitivity Tests Anti-Bacterial Agents Biofilms Quinuclidines

Classifications MeSH