The cumulative incidence of neonatal metabolic acidemia after terminal bradycardia in the 2nd stage of labor: a survival-based model.
Cardiotocography
Childbirth
Fetal bradycardia
Fetal surveillance
Fetal–neonatal pH
Intrapartum fetal monitoring
Metabolic acidemia at birth
Survival analysis
Journal
Archives of gynecology and obstetrics
ISSN: 1432-0711
Titre abrégé: Arch Gynecol Obstet
Pays: Germany
ID NLM: 8710213
Informations de publication
Date de publication:
05 2023
05 2023
Historique:
received:
27
02
2022
accepted:
07
05
2022
medline:
19
4
2023
pubmed:
1
6
2022
entrez:
31
5
2022
Statut:
ppublish
Résumé
The aim of the study was to estimate by a survival analysis model the hazard function (HF) for neonatal metabolic acidemia (MA) throughout the 2nd stage of labor (2STG) at the time of occurrence of a terminal bradycardia ≥ 10 min requiring expedited delivery, and the cumulative incidence function (CIF) for MA according with the duration of bradycardia stratified in 10-12 min and > 12 min. Singleton pregnancies experiencing terminal fetal bradycardia requiring expedited delivery in the 2STG at 38 + 0-41 + 3 weeks and delivering in the year 2019, were identified. The presence of MA (pH < 7 and/or BE ≤ - 12 mmol/L) was determined based on the acid-base status in the umbilical artery cord blood. Survival analysis was used to assess the hazard function (HF) and the cumulative incidence function (CIF) for MA occurring after terminal fetal bradycardia, at the 2STG. Out of a non-consecutive population of 12,331 pregnancies, there were 52 cases that fit the inclusion criteria. Twenty-four (46.2%) of those develop MA. Abnormal quantitative pH values and the HF for MA correlated with the duration of 2STG at the time of bradycardia onset, but not with bradycardia duration. After 60 min of duration of 2STG, the HF (or instantaneous rate of failure) increased dramatically (from 1.2 to 20 about at 120 min). At paired duration of 2STG, a higher CIF was observed for the terminal bradycardia > 12 min. Forty-six percent of term fetuses with terminal bradycardia had MA at birth. Despite the low sensitivity and a non-significant association with quantitative pH values, the duration of terminal bradycardia in the 2STG is associated with a higher CIF for MA.
Identifiants
pubmed: 35635618
doi: 10.1007/s00404-022-06619-9
pii: 10.1007/s00404-022-06619-9
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1407-1414Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Turner JM, Mitchell MD, Kumar SS (2020) The physiology of intrapartum fetal compromise at term. Am J Obstet Gynecol 222(1):17–26
doi: 10.1016/j.ajog.2019.07.032
pubmed: 31351061
Graham EM, Ruis KA, Hartman AL, Northington FJ, Fox HE (2008) A systematic review of the role of intrapartum hypoxia ischemia in the causation of neonatal encephalopathy. Am J Obstet Gynecol 199(6):587–595
doi: 10.1016/j.ajog.2008.06.094
pubmed: 19084096
Block BS, Schlafer DH, Wentworth RA, Kreitzer LA, Nathanielsz PW (1990) Intrauterine asphyxia and the breakdown of physiologic circulatory compensation in fetal sheep. Am J Obstet Gynecol 162(5):1325–1331
doi: 10.1016/0002-9378(90)90046-A
pubmed: 2339735
Jensen A, Berger R (1991) Fetal circulatory responses to oxygen lack. J Dev Physiol 16(4):181–207
pubmed: 1812154
Pinas A, Chandraharan E (2016) Continuous cardiotocography during labour: analysis, classification and management. Best Pract Res Clin Obstet Gynaecol 30:33–47
doi: 10.1016/j.bpobgyn.2015.03.022
pubmed: 26165747
Ugwumadu A (2013) Understanding cardiotocographic patterns associated with intrapartum fetal hypoxia and neurologic injury. Best Pract Res Clin Obstet Gynaecol 27(4):509–536
doi: 10.1016/j.bpobgyn.2013.04.002
pubmed: 23702579
Ugwumadu A (2014) Are we (mis)guided by current guidelines on intrapartum fetal heart rate monitoring? Case for a more physiological approach to interpretation. BJOG 121(9):1063–1070
doi: 10.1111/1471-0528.12900
pubmed: 24920154
Piquard F, Hsiung R, Mettauer M, Schaefer A, Haberey P, Dellenbach P (1988) The validity of fetal heart rate monitoring during the second stage of labor. Obstet Gynecol 72:746–751
pubmed: 3140151
Sheiner E, Hadar A, Hallak M et al (2001) Clinical significance of fetal heart rate tracings during the second stage of labor. Obstet Gynecol 97:747–752
pubmed: 11339928
Weber T, Hahn-Pedersen S (1979) Normal values for fetal scalp tissue pH during labour. Br J Obstet Gynaecol 86:728–731
doi: 10.1111/j.1471-0528.1979.tb11275.x
pubmed: 40589
Tranquilli AL, Biagini A, Greco P, Di Tommaso M, Giannubilo SR (2013) The correlation between fetal bradycardia area in the second stage of labor and acidemia at birth. J Matern Fetal Neonatal Med 26:1425–1429
doi: 10.3109/14767058.2013.784263
pubmed: 23488805
Cavoretto PI, Seidenari A, Amodeo S, Della Gatta AN, Nale R, Ismail YS, Candiani M, Farina A (2021) Quantification of posterior risk related to intrapartum FIGO 2015 criteria for cardiotocography in the second stage of labor. Fetal Diagn Ther 48(2):149–157
doi: 10.1159/000512658
pubmed: 33508830
Freeman RK (2008) Medical and legal implications for necessary requirements to diagnose damaging hypoxic-ischemic encephalopathy leading to later cerebral palsy. Am J Obstet Gynecol 199(6):585–586
doi: 10.1016/j.ajog.2008.06.096
pubmed: 19084095
Hon EH (1958) The electronic evaluation of the fetal heart. Am J Obstet Gynecol 75:1215–1230
doi: 10.1016/0002-9378(58)90707-5
pubmed: 13545252
Beard RW, Filshie GM, Knight CA, Roberts GM (1971) The significance of the changes in the continuous fetal heart rate in the first stage of labour. J Obstet Gynaecol Br Commonw 78(10):865–881
doi: 10.1111/j.1471-0528.1971.tb00198.x
pubmed: 5111893
Donker DK, van Geijn HP, Hasman A (1993) Interobserver variation in the assessment of fetal heart rate recordings. Eur J Obstet Gynecol Reprod Biol 52(1):21–28
doi: 10.1016/0028-2243(93)90220-7
pubmed: 8119470
Clark SL, Hankins GD (2003) Temporal and demographic trends in cerebral palsy–fact and fiction. Am J Obstet Gynecol 188(3):628–633
doi: 10.1067/mob.2003.204
pubmed: 12634632
Ekengård F, Cardell M, Herbst A (2020) Low sensitivity of the new FIGO classification system for electronic fetal monitoring to identify fetal acidosis in the second stage of labor. Eur J Obstet Gynecol Reprod Biol X 9:100120
doi: 10.1016/j.eurox.2020.100120
pubmed: 33319210
pmcid: 7724159
Ayres-de-Campos D, Spong CY, Chandraharan E (2015) FIGO intrapartum fetal monitoring expert consensus panel. FIGO consensus guidelines on intrapartum fetal monitoring: cardiotocography. Int J Gynaecol Obstet 13:13–24
doi: 10.1016/j.ijgo.2015.06.020
Santo S, Ayres-de-Campos D, Costa-Santos C, Schnettler W, Ugwumadu A, Da Graça LM (2017) Agreement and accuracy using the FIGO, ACOG and NICE cardiotocography interpretation guidelines. Acta Obstet Gynecol Scand 96(2):166–175
doi: 10.1111/aogs.13064
pubmed: 27869985
Ayres-de-Campos D, Arulkumaran S (2015) FIGO intrapartum fetal monitoring expert consensus panel. FIGO consensus guidelines on intrapartum fetal monitoring: physiology of fetal oxygenation and the main goals of intrapartum fetal monitoring. Int J Gynaecol Obstet 131(1):5–8
doi: 10.1016/j.ijgo.2015.06.018
pubmed: 26433399
von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP (2008) The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol 61(4):344–349
doi: 10.1016/j.jclinepi.2007.11.008
Gimovsky AC, Berghella V (2016) Randomized controlled trial of prolonged second stage: extending the time limit vs usual guidelines. Am J Obstet Gynecol 214(361):e1-6
Siggaard-Andersen O (1971) An acid-base chart for arterial blood with normal and pathophysiological reference areas. Scand J Clin Lab Invest 27(3):239–245
doi: 10.3109/00365517109080214
pubmed: 5581186
Sabol BA, Caughey AB (2016) Acidemia in neonates with a 5-minute Apgar score of 7 or greater: what are the outcomes? Am J Obstet Gynecol 215(4):486–496
doi: 10.1016/j.ajog.2016.05.035
Low JA, Pickersgill H, Killen H, Derrick EJ (2001) The prediction and prevention of intrapartum fetal asphyxia in term pregnancies. Am J Obstet Gynecol 184:724–730
doi: 10.1067/mob.2001.111720
pubmed: 11262479
Di Tommaso M, Seravalli V, Cordisco A, Consorti G, Mecacci F, Rizzello F (2013) Comparison of five classification systems for interpreting electronic fetal monitoring in predicting neonatal status at birth. J Matern Fetal Neonatal Med 26:487–490
doi: 10.3109/14767058.2012.735726
pubmed: 23039108
Elliot C, Warrick PA, Graham E, Hamilton EF (2010) Graded classification of fetal heart rate tracings: association with neonatal metabolic acidosis and neurologic morbidity. Am J Obstet Gynecol 202:258.e1-258.e8
doi: 10.1016/j.ajog.2009.06.026
Clark SL, Hamilton EF, Garite TJ, Timmins A, Warrick PA, Smith S (2017) The limits of electronic fetal heart rate monitoring in the prevention of neonatal metabolic acidemia. Am J Obstet Gynecol 216(2):163.e1-163.e6
doi: 10.1016/j.ajog.2016.10.009
pubmed: 27751795
Hasegawa J, Farina A, Turchi G, Hasegawa Y, Zanello M, Baroncini S (2013) Effects of epidural analgesia on labor length, instrumental delivery, and neonatal short-term outcome. J Anesth 27:43–47
doi: 10.1007/s00540-012-1480-9
pubmed: 22965331