Differential influence of YAP1 and TAZ on differentiation of intestinal epithelial cell: A review.
Adaptor Proteins, Signal Transducing
Cell Differentiation
Cell Proliferation
Epithelial Cells
/ metabolism
Protein Serine-Threonine Kinases
/ metabolism
Signal Transduction
/ physiology
Trans-Activators
Transcription Factors
/ metabolism
Transcriptional Coactivator with PDZ-Binding Motif Proteins
/ metabolism
YAP-Signaling Proteins
/ metabolism
Hippo pathway
TAZ
YAP1
differentiation
epithelium
intestine
Journal
Anatomical record (Hoboken, N.J. : 2007)
ISSN: 1932-8494
Titre abrégé: Anat Rec (Hoboken)
Pays: United States
ID NLM: 101292775
Informations de publication
Date de publication:
05 2023
05 2023
Historique:
revised:
30
03
2022
received:
22
02
2022
accepted:
27
04
2022
medline:
14
4
2023
pubmed:
2
6
2022
entrez:
1
6
2022
Statut:
ppublish
Résumé
Intestinal cell stemness, proliferation and differentiation are complex processes all occurring in distinct compartments of the crypt that need to be closely regulated to ensure proper epithelial renewal. The involvement of the Hippo pathway in intestinal epithelial proliferation and regeneration after injury via the regulation of its effectors YAP1 and TAZ has been well-documented over the last decade. The implication of YAP1 and TAZ on intestinal epithelial cell differentiation is less clear. Using intestinal cell models in which the expression of YAP1 and TAZ can be modulated, our group showed that YAP1 inhibits differentiation of the two main intestinal epithelial cell types, goblet and absorptive cells through a specific mechanism involving the repression of prodifferentiation transcription factor CDX2 expression. Further analysis provided evidence that the repressive effect of YAP1 on intestinal differentiation is mediated by regulation of the Hippo pathway by Src family kinase activity. Interestingly, the TAZ paralog does not seem to be involved in this process, which provides another example of the lack of perfect complementarity of the two main Hippo effectors.
Substances chimiques
Adaptor Proteins, Signal Transducing
0
Protein Serine-Threonine Kinases
EC 2.7.11.1
Trans-Activators
0
Transcription Factors
0
Transcriptional Coactivator with PDZ-Binding Motif Proteins
0
YAP-Signaling Proteins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
1054-1061Subventions
Organisme : CIHR
ID : MOP-123415
Pays : Canada
Organisme : CIHR
ID : MOP-97836
Pays : Canada
Informations de copyright
© 2022 American Association for Anatomy.
Références
Alarcon, C., Zaromytidou, A. I., Xi, Q., Gao, S., Yu, J., Fujisawa, S., Barlas, A., Miller, A. N., Manova-Todorova, K., Macias, M. J., Sapkota, G., Pan, D., & Massague, J. (2009). Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-beta pathways. Cell, 139, 757-769.
Andersson-Rolf, A., Zilbauer, M., Koo, B. K., & Clevers, H. (2017). Stem cells in repair of gastrointestinal epithelia. Physiology, 32, 278-289.
Barry, E. R., Morikawa, T., Butler, B. L., Shrestha, K., de la Rosa, R., Yan, K. S., Fuchs, C. S., Magness, S. T., Smits, R., Ogino, S., Kuo, C. J., & Camargo, F. D. (2013). Restriction of intestinal stem cell expansion and the regenerative response by YAP. Nature, 493, 106-110.
Beaulieu, J. F., & Menard, D. (2012). Isolation, characterization, and culture of normal human intestinal crypt and villus cells. Methods in Molecular Biology, 806, 157-173.
Beaulieu, J. F., & Quaroni, A. (1991). Clonal analysis of sucrase-isomaltase expression in the human colon adenocarcinoma Caco-2 cells. The Biochemical Journal, 280(Pt 3), 599-608.
Benoit, Y. D., Groulx, J. F., Gagne, D., & Beaulieu, J. F. (2012). RGD-dependent epithelial cell-matrix interactions in the human intestinal crypt. Journal of Signal Transduction, 2012, 248759.
Benoit, Y. D., Lepage, M. B., Khalfaoui, T., Tremblay, E., Basora, N., Carrier, J. C., Gudas, L. J., & Beaulieu, J. F. (2012). Polycomb repressive complex 2 impedes intestinal cell terminal differentiation. Journal of Cell Science, 125, 3454-3463.
Benoit, Y. D., Pare, F., Francoeur, C., Jean, D., Tremblay, E., Boudreau, F., Escaffit, F., & Beaulieu, J. F. (2010). Cooperation between HNF-1α, Cdx2, and GATA-4 in initiating an enterocytic differentiation program in a normal human intestinal epithelial progenitor cell line. American Journal of Physiology: Gastrointestinal and Liver Physiology, 298, G504-G517.
Boudreau, F., Rivard, N., Gendron, F.-P., & Beaulieu, J.-F. (2007). CDX2: A transcription factor with multiple tasks for epithelial cells of the digestive tract. Médecine Sciences, 23, 7-8.
Byun, M. R., Kim, A. R., Hwang, J. H., Sung, M. K., Lee, Y. K., Hwang, B. S., Rho, J. R., Hwang, E. S., & Hong, J. H. (2012). Phorbaketal a stimulates osteoblast differentiation through TAZ mediated Runx2 activation. FEBS Letters, 586, 1086-1092.
Cai, J., Zhang, N., Zheng, Y., de Wilde, R. F., Maitra, A., & Pan, D. (2010). The Hippo signaling pathway restricts the oncogenic potential of an intestinal regeneration program. Genes & Development, 24, 2383-2388.
Callus, B. A., Finch-Edmondson, M. L., Fletcher, S., & Wilton, S. D. (2019). YAPping about and not forgetting TAZ. FEBS Letters, 593, 253-276.
Camargo, F. D., Gokhale, S., Johnnidis, J. B., Fu, D., Bell, G. W., Jaenisch, R., & Brummelkamp, T. R. (2007). YAP1 increases organ size and expands undifferentiated progenitor cells. Current Biology, 17, 2054-2060.
Cloutier, G., Sallenbach-Morrissette, A., & Beaulieu, J. F. (2019). Non-integrin laminin receptors in epithelia. Tissue & Cell, 56, 71-78.
Deng, Y., Wu, A., Li, P., Li, G., Qin, L., Song, H., & Mak, K. K. (2016). Yap1 regulates multiple steps of chondrocyte differentiation during skeletal development and bone repair. Cell Reports, 14, 2224-2237.
Di Palma, T., D'Andrea, B., Liguori, G. L., Liguoro, A., de Cristofaro, T., Del Prete, D., Pappalardo, A., Mascia, A., & Zannini, M. (2009). TAZ is a coactivator for Pax8 and TTF-1, two transcription factors involved in thyroid differentiation. Experimental Cell Research, 315, 162-175.
Dupont, S. (2016). Role of YAP/TAZ in cell-matrix adhesion-mediated signalling and mechanotransduction. Experimental Cell Research, 343, 42-53.
El Ouarrat, D., Isaac, R., Lee, Y. S., Oh, D. Y., Wollam, J., Lackey, D., Riopel, M., Bandyopadhyay, G., Seo, J. B., Sampath-Kumar, R., & Olefsky, J. M. (2020). TAZ is a negative regulator of PPARγ activity in adipocytes and TAZ deletion improves insulin sensitivity and glucose tolerance. Cell Metabolism, 31, 162-173.e5.
Elias, K. M., Emori, M. M., Westerling, T., Long, H., Budina-Kolomets, A., Li, F., MacDuffie, E., Davis, M. R., Holman, A., Lawney, B., Freedman, M. L., Quackenbush, J., Brown, M., & Drapkin, R. (2016). Epigenetic remodeling regulates transcriptional changes between ovarian cancer and benign precursors. JCI Insight, 1, e87988.
Fallah, S. (2021). First person - Sepideh Fallah. Biology Open, 10, bio059137.
Fallah, S., & Beaulieu, J. F. (2020). The Hippo pathway effector YAP1 regulates intestinal epithelial cell differentiation. Cell, 9, 1895.
Fallah, S., & Beaulieu, J. F. (2021). Src family kinases inhibit differentiation of intestinal epithelial cells through the Hippo effector YAP1. Biology Open, 10, bio058904.
Fallah, S., Sénicourt, B., & Beaulieu, J.-F. (2020). Proliferation in the gastrointestinal epithelium. In E. J. Kuipers (Ed.), Encyclopedia of gastroenterology (2nd ed., pp. 304-310). Academic Press.
Finch-Edmondson, M. L., Strauss, R. P., Passman, A. M., Sudol, M., Yeoh, G. C., & Callus, B. A. (2015). TAZ protein accumulation is negatively regulated by YAP abundance in mammalian cells. The Journal of Biological Chemistry, 290, 27928-27938.
Fitamant, J., Kottakis, F., Benhamouche, S., Tian, H. S., Chuvin, N., Parachoniak, C. A., Nagle, J. M., Perera, R. M., Lapouge, M., Deshpande, V., Zhu, A. X., Lai, A., Min, B., Hoshida, Y., Avruch, J., Sia, D., Camprecios, G., McClatchey, A. I., Llovet, J. M., … Bardeesy, N. (2015). YAP inhibition restores hepatocyte differentiation in advanced HCC, leading to tumor regression. Cell Reports, 10, 1692-1707.
Gregorieff, A., Liu, Y., Inanlou, M. R., Khomchuk, Y., & Wrana, J. L. (2015). Yap-dependent reprogramming of Lgr5+ stem cells drives intestinal regeneration and cancer. Nature, 526, 715-718.
Hong, A. W., Meng, Z., & Guan, K. L. (2016). The Hippo pathway in intestinal regeneration and disease. Nature Reviews: Gastroenterology & Hepatology, 13, 324-337.
Hong, J. H., Hwang, E. S., McManus, M. T., Amsterdam, A., Tian, Y., Kalmukova, R., Mueller, E., Benjamin, T., Spiegelman, B. M., Sharp, P. A., Hopkins, N., & Yaffe, M. B. (2005). TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science, 309, 1074-1078.
Imajo, M., Ebisuya, M., & Nishida, E. (2015). Dual role of YAP and TAZ in renewal of the intestinal epithelium. Nature Cell Biology, 17, 7-19.
Isago, H., Mitani, A., Mikami, Y., Horie, M., Urushiyama, H., Hamamoto, R., Terasaki, Y., & Nagase, T. (2020). Epithelial expression of YAP and TAZ is sequentially required in lung development. American Journal of Respiratory Cell and Molecular Biology, 62, 256-266.
Jeong, M. G., Kim, H. K., & Hwang, E. S. (2021). The essential role of TAZ in normal tissue homeostasis. Archives of Pharmacal Research, 44, 253-262.
Kaan, H. Y. K., Chan, S. W., Tan, S. K. J., Guo, F., Lim, C. J., Hong, W., & Song, H. (2017). Crystal structure of TAZ-TEAD complex reveals a distinct interaction mode from that of YAP-TEAD complex. Scientific Reports, 7, 2035.
Kim, N.-G., & Gumbiner, B. M. (2015). Adhesion to fibronectin regulates Hippo signaling via the FAK-Src-PI3K pathway. Journal of Cell Biology, 210, 503-515.
Kitamura, H., Cho, M., Lee, B. H., Gum, J. R., Siddiki, B. B., Ho, S. B., Toribara, N. W., Lesuffleur, T., Zweibaum, A., Kitamura, Y., Yonezawa, S., & Kim, Y. S. (1996). Alteration in mucin gene expression and biological properties of HT29 colon cancer cell subpopulations. European Journal of Cancer, 32A, 1788-1796.
Lamar, J. M., Xiao, Y., Norton, E., Jiang, Z.-G., Gerhard, G. M., Kooner, S., Warren, J. S. A., & Hynes, R. O. (2019). SRC tyrosine kinase activates the YAP/TAZ axis and thereby drives tumor growth and metastasis. Journal of Biological Chemistry, 294, 2302-2317.
LeBlanc, L., Ramirez, N., & Kim, J. (2021). Context-dependent roles of YAP/TAZ in stem cell fates and cancer. Cellular and Molecular Life Sciences, 78, 4201-4219.
Lee, D. H., Park, J. O., Kim, T. S., Kim, S. K., Kim, T. H., Kim, M. C., Park, G. S., Kim, J. H., Kuninaka, S., Olson, E. N., Saya, H., Kim, S. Y., Lee, H., & Lim, D. S. (2016). LATS-YAP/TAZ controls lineage specification by regulating TGFβ signaling and Hnf4α expression during liver development. Nature Communications, 7, 11961.
Liu, Q., Liu, X., & Song, G. (2021). The Hippo pathway: A master regulatory network important in cancer. Cell, 10, 1416.
Lopez-Hernandez, A., Sberna, S., & Campaner, S. (2021). Emerging principles in the transcriptional control by YAP and TAZ. Cancers, 13, 4242.
Meng, Z., Moroishi, T., & Guan, K. L. (2016). Mechanisms of Hippo pathway regulation. Genes & Development, 30, 1-17.
Nam, J. S., Ino, Y., Sakamoto, M., & Hirohashi, S. (2002). Src family kinase inhibitor PP2 restores the E-cadherin/catenin cell adhesion system in human cancer cells and reduces cancer metastasis. Clinical Cancer Research, 8, 2430-2436.
Ohara, T. E., Colonna, M., & Stappenbeck, T. S. (2022). Adaptive differentiation promotes intestinal villus recovery. Developmental Cell, 57, 166-179.e6.
Pageot, L. P., Perreault, N., Basora, N., Francoeur, C., Magny, P., & Beaulieu, J. F. (2000). Human cell models to study small intestinal functions: Recapitulation of the crypt-villus axis. Microscopy Research and Technique, 49, 394-406.
Pinto, M., Robine-Leon, S., Appay, M. D., Kedinger, M., Triadou, N., Dussaulx, E., Lacroix, B., Simon-Assmann, P., Haffen, K., Fogh, J., & Zweibaum, A. (1983). Enterocyte-like differentiation and polarization of the human colon cacinoma cell line Caco-2 in culture. Biology of the Cell, 47, 323-330.
Reggiani, F., Gobbi, G., Ciarrocchi, A., & Sancisi, V. (2021). YAP and TAZ are not identical twins. Trends in Biochemical Sciences, 46, 154-168.
Roostaee, A., Benoit, Y. D., Boudjadi, S., & Beaulieu, J. F. (2016). Epigenetics in intestinal epithelial cell renewal. Journal of Cellular Physiology, 231, 2361-2367.
Roostaee, A., Guezguez, A., Beausejour, M., Simoneau, A., Vachon, P. H., Levy, E., & Beaulieu, J. F. (2015). Histone deacetylase inhibition impairs normal intestinal cell proliferation and promotes specific gene expression. Journal of Cellular Biochemistry, 116, 2695-2708.
Sailaja, B. S., He, X. C., & Li, L. (2016). The regulatory niche of intestinal stem cells. The Journal of Physiology, 594, 4827-4836.
Seltana, A., Guezguez, A., Lepage, M., Basora, N., & Beaulieu, J. F. (2013). Src family kinase inhibitor PP2 accelerates differentiation in human intestinal epithelial cells. Biochemical and Biophysical Research Communications, 430, 1195-1200.
Si, Y., Ji, X., Cao, X., Dai, X., Xu, L., Zhao, H., Guo, X., Yan, H., Zhang, H., Zhu, C., Zhou, Q., Tang, M., Xia, Z., Li, L., Cong, Y. S., Ye, S., Liang, T., Feng, X. H., & Zhao, B. (2017). Src inhibits the Hippo tumor suppressor pathway through tyrosine phosphorylation of Lats1. Cancer Research, 77, 4868-4880.
Spit, M., Koo, B. K., & Maurice, M. M. (2018). Tales from the crypt: Intestinal niche signals in tissue renewal, plasticity and cancer. Open Biology, 8, 180120.
Sun, C., De Mello, V., Mohamed, A., Ortuste Quiroga, H. P., Garcia-Munoz, A., Al Bloshi, A., Tremblay, A. M., von Kriegsheim, A., Collie-Duguid, E., Vargesson, N., Matallanas, D., Wackerhage, H., & Zammit, P. S. (2017). Common and distinctive functions of the Hippo effectors Taz and Yap in skeletal muscle stem cell function. Stem Cells, 35, 1958-1972.
Taniguchi, K., Wu, L. W., Grivennikov, S. I., de Jong, P. R., Lian, I., Yu, F. X., Wang, K., Ho, S. B., Boland, B. S., Chang, J. T., Sandborn, W. J., Hardiman, G., Raz, E., Maehara, Y., Yoshimura, A., Zucman-Rossi, J., Guan, K. L., & Karin, M. (2015). A gp130-Src-YAP module links inflammation to epithelial regeneration. Nature, 519, 57-62.
Traber, P. G. (1998). Control of gene expression in intestinal epithelial cells. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 353, 911-914.
van der Heijden, M., & Vermeulen, L. (2019). Stem cells in homeostasis and cancer of the gut. Molecular Cancer, 18, 66.
Vazquez-Iglesias, L., Barcia-Castro, L., Rodriguez-Quiroga, M., Paez de la Cadena, M., Rodriguez-Berrocal, J., & Cordero, O. J. (2019). Surface expression marker profile in colon cancer cell lines and sphere-derived cells suggests complexity in CD26+ cancer stem cells subsets. Biology Open, 8, bio041673.
Wang, L., Shi, S., Guo, Z., Zhang, X., Han, S., Yang, A., Wen, W., & Zhu, Q. (2013). Overexpression of YAP and TAZ is an independent predictor of prognosis in colorectal cancer and related to the proliferation and metastasis of colon cancer cells. PLoS One, 8, e65539.
Yang, D., Zhang, N., Li, M., Hong, T., Meng, W., & Ouyang, T. (2021). The Hippo signaling pathway: The trader of tumor microenvironment. Frontiers in Oncology, 11, 772134.
Yui, S., Azzolin, L., Maimets, M., Pedersen, M. T., Fordham, R. P., Hansen, S. L., Larsen, H. L., Guiu, J., Alves, M. R. P., Rundsten, C. F., Johansen, J. V., Li, Y., Madsen, C. D., Nakamura, T., Watanabe, M., Nielsen, O. H., Schweiger, P. J., Piccolo, S., & Jensen, K. B. (2018). YAP/TAZ-dependent reprogramming of colonic epithelium links ECM remodeling to tissue regeneration. Cell Stem Cell, 22, 35-49.e7.
Zhou, D., Zhang, Y., Wu, H., Barry, E., Yin, Y., Lawrence, E., Dawson, D., Willis, J. E., Markowitz, S. D., Camargo, F. D., & Avruch, J. (2011). Mst1 and Mst2 protein kinases restrain intestinal stem cell proliferation and colonic tumorigenesis by inhibition of Yes-associated protein (Yap) overabundance. Proceedings of the National Academy of Sciences of the United States of America, 108, E1312-E1320.
Zweibaum, A., Pinto, M., Chevalier, G., Dussaulx, E., Triadou, N., Lacroix, B., Haffen, K., Brun, J. L., & Rousset, M. (1985). Enterocytic differentiation of a subpopulation of the human colon tumor cell line HT-29 selected for growth in sugar-free medium and its inhibition by glucose. Journal of Cellular Physiology, 122, 21-29.