The complex epistemological challenge of data curation in dietary metabarcoding: Comment on "The precautionary principle and dietary DNA metabarcoding: Commonly used abundance thresholds change ecological interpretation" by Littleford-Colquhoun et al. (2022).

diet false positives minimum sequence copy thresholds negative controls trophic interactions

Journal

Molecular ecology
ISSN: 1365-294X
Titre abrégé: Mol Ecol
Pays: England
ID NLM: 9214478

Informations de publication

Date de publication:
11 2022
Historique:
revised: 30 05 2022
received: 26 01 2022
accepted: 10 06 2022
pubmed: 3 7 2022
medline: 9 11 2022
entrez: 2 7 2022
Statut: ppublish

Résumé

In their article, Littleford-Colquhoun et al. (2022) advise against using arbitrary relative read abundance (RRA) thresholds (i.e., minimum sequence copy thresholds) for removing low-abundance sequences since they can increase false negative rates in dietary DNA metabarcoding data sets. The main criticisms presented against these widespread methods are that they (i) are arbitrary, often existing as standard values or defined based on researcher-selected delineations, (ii) are subjective, varying between studies and contexts, and, most problematically, (iii) result in the exclusion of true positives, particularly rarely consumed taxa, to the detriment of ecological insight. We commend the authors for presenting a refreshing and timely perspective on this often neglected topic, which is certainly in need of greater discussion following over a decade of significant advances in dietary metabarcoding. In this complex epistemological problem of false positives versus false negatives, we feel that several of the points raised deserve additional discussion. We address these aspects below, including measured approaches to data filtration and consistent representation of RRAs, and we welcome any further discourse to solidify or refute the concepts therein.

Identifiants

pubmed: 35778947
doi: 10.1111/mec.16576
doi:

Substances chimiques

DNA 9007-49-2

Types de publication

Journal Article Comment

Langues

eng

Sous-ensembles de citation

IM

Pagination

5653-5659

Commentaires et corrections

Type : CommentOn
Type : CommentIn

Informations de copyright

© 2022 John Wiley & Sons Ltd.

Références

Baker, M. (2016). 1,500 scientists lift the lid on reproducibility. Nature News, 533(7604), 452-454.
Bohmann, K., Elbrecht, V., Carøe, C., Bista, I., Leese, F., Bunce, M., Yu, D. W., Seymour, M., Dumbrell, A. J., & Creer, S. (2021). Strategies for sample labelling and library preparation in DNA metabarcoding studies. Molecular Ecology Resources, 22(4), 1231-1246.
Brandon-Mong, G.-J., Gan, H., Sing, K., Lee, P., Lim, P., & Wilson, J. (2015). DNA metabarcoding of insects and allies: An evaluation of primers and pipelines. Bulletin of Entomological Research, 105(6), 717-727. https://doi.org/10.1017/S0007485315000681
Browett, S. S., Curran, T. G., O'Meara, D. B., Harrington, A. P., Sales, N. G., Antwis, R. E., O’Neill, D., & McDevitt, A. D. (2021). Primer biases in the molecular assessment of diet in multiple insectivorous mammals. Mammalian Biology, 101, 293-304.
Calder, C. R., Harwood, J. D., & Symondson, W. O. C. (2005). Detection of scavenged material in the guts of predators using monoclonal antibodies: A significant source of error in measurement of predation? Bulletin of Entomological Research, 95(1), 57-62. https://doi.org/10.1079/BER2004339
Carlsen, T., Aas, A. B., Lindner, D., Vrålstad, T., Schumacher, T., & Kauserud, H. (2012). Don't make a mista(g)ke: Is tag switching an overlooked source of error in amplicon pyrosequencing studies? Fungal Ecology, 5(6), 747-749.
Chao, A., Gotelli, N., Hsieh, T., Sander, E., Ma, K., Colwell, R., & Ellison, A. (2014). Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecological Monographs, 84(1), 45-67.
Chao, A., & Jost, L. (2013). Coverage-based rarefaction and extrapolation: Standardizing samples by completeness rather than size. Ecology, 93(12), 2533-2547.
Clare, E. L., Chain, F. J. J., Littlefair, J. E., & Cristescu, M. E. (2016). The effects of parameter choice on defining molecular operational taxonomic units and resulting ecological analyses of metabarcoding data. Genome, 59(11), 981-990.
Clare, E. L., Economou, C. K., Bennett, F. J., Dyer, C. E., Adams, K., McRobie, B., … Littlefair, J. E. (2022). Measuring biodiversity from DNA in the air. Current Biology, 32(3), 693-700.e5.
Coissac, E., Riaz, T., & Puillandre, N. (2012). Bioinformatic challenges for DNA metabarcoding of plants and animals. Molecular Ecology, 21, 1834-1847.
Cuff, J. P., Drake, L. E., Tercel, M. P. T. G., Stockdale, J. E., Orozco-terWengel, P., Bell, J. R., … Symondson, W. O. C. (2021). Money spider dietary choice in pre- and post-harvest cereal crops using metabarcoding. Ecological Entomology, 46(2), 249-261.
Cuff, J. P., Kitson, J. J. N., Hemprich-Bennett, D., Tercel, M. P. T. G., Browett, S. S., & Evans, D. M. (2022). The predator problem and PCR primers in molecular dietary analysis: swamped or silenced; depth or breadth? Authorea. https://doi.org/10.22541/au.165288246.68272734/v1
Cuff, J. P., Windsor, F. M., Tercel, M. P. T. G., Kitson, J. J. N., & Evans, D. M. (2022). Overcoming the pitfalls of merging dietary metabarcoding into ecological networks. Methods in Ecology and Evolution, 13(3), 545-559. https://doi.org/10.1111/2041-210X.13796
De Barba, M., Miquel, C., Boyer, F., Rioux, D., Coissac, E., & Taberlet, P. (2014). DNA metabarcoding multiplexing for omnivorous diet analysis and validation of data accuracy. Molecular Ecology Resources, 14(2), 306-323.
Deagle, B. E., Thomas, A. C., McInnes, J. C., Clarke, L. J., Vesterinen, E. J., Clare, E. L., Kartzinel, T. R., & Eveson, J. P. (2019). Counting with DNA in metabarcoding studies: How should we convert sequence reads to dietary data? Molecular Ecology, 28(2), 391-406. https://doi.org/10.1111/mec.14734
Deagle, B. E., Thomas, A. C., Shaffer, A. K., & Trites, A. W. (2013). Quantifying sequence proportions in a DNA-based diet study using Ion Torrent amplicon sequencing: Which counts count? Molecular Ecology Resources, 13, 620-633. https://doi.org/10.1111/1755-0998.12103
Doi, H., Fukaya, K., Oka, S.-i., Sato, K., Kondoh, M., & Miya, M. (2019). Evaluation of detection probabilities at the water-filtering and initial PCR steps in environmental DNA metabarcoding using a multispecies site occupancy model. Scientific Reports, 9(1), 1-8. https://doi.org/10.1038/s41598-019-40,233-1
Drake, L. E., Cuff, J. P., Young, R. E., Marchbank, A., Chadwick, E. A., & Symondson, W. O. C. (2022). An assessment of minimum sequence copy thresholds for identifying and reducing the prevalence of artefacts in dietary metabarcoding data. Methods in Ecology and Evolution, 13(3), 694-710. https://doi.org/10.1111/2041-210X.13780
Ficetola, G. F., Pansu, J., Elie, A. U. R., Coissac, E., & Gilles, P. (2015). Replication levels, false presences and the estimation of the presence / absence from eDNA metabarcoding data. Molecular Ecology Resources, 15(3), 543-556. https://doi.org/10.1111/1755-0998.12338
Ficetola, G. F., Taberlet, P., & Coissac, E. (2016). How to limit false positives in environmental DNA and metabarcoding? Molecular Ecology Resources, 16(3), 604-607. https://doi.org/10.1111/1755-0998.12508
Flynn, J. M., Brown, E. A., Chain, F. J. J., MacIsaac, H. J., & Cristescu, M. E. (2015). Toward accurate molecular identification of species in complex environmental samples: Testing the performance of sequence filtering and clustering methods. Ecology and Evolution, 5(11), 2252-2266.
Fukaya, K., Kondo, N. I., Matsuzaki, S. S., & Kadoya, T. (2021). Multispecies site occupancy modelling and study design for spatially replicated environmental DNA metabarcoding. Methods in Ecology and Evolution, 13(1), 183-193.
González, A., Dubut, V., Corse, E., Mekdad, R., Dechatre, T., & Meglécz, E. (2020). VTAM: A robust pipeline for validating metabarcoding data using internal controls. BioRxiv, 11(06), 371187.
Hsieh, T. C., Ma, K. H., & Chao, A. (2016). iNEXT: An R package for interpolation and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution, 7(12), 1451-1456.
Kircher, M., Sawyer, S., & Meyer, M. (2012). Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Research, 40(1), e3.
Kitson, J. J. N., Hahn, C., Sands, R. J., Straw, N. A., Evans, D. M., & Lunt, D. H. (2018). Detecting host-parasitoid interactions in an invasive Lepidopteran using nested tagging DNA metabarcoding. Molecular Ecology, 28, 471-483. https://doi.org/10.1111/mec.14518
Littleford-Colquhoun, B. L., Freeman, P. T., Sackett, V. I., Tulloss, C. V., McGarvey, L. M., Geremia, C., & Kartzinel, T. R. (2022). The precautionary principle and dietary DNA metabarcoding: Commonly used abundance thresholds change ecological interpretation. Molecular Ecology, 31, 1615-1626. https://doi.org/10.1111/mec.16352
Mao, D. P., Zhou, Q., Chen, C. Y., & Quan, Z. X. (2012). Coverage evaluation of universal bacterial primers using the metagenomic datasets. BMC Microbiology, 12, 66. https://doi.org/10.1186/1471-2180-12-66
McClenaghan, B., Compson, Z. G., & Hajibabaei, M. (2020). Validating metabarcoding-based biodiversity assessments with multi-species occupancy models: A case study using coastal marine eDNA. PLoS ONE, 15(3), e0224119.
Murray, D. C., Bunce, M., Cannell, B. L., Oliver, R., Houston, J., Nicole, E., … Haile, J. (2011). DNA-based faecal dietary analysis: A comparison of qPCR and high-throughput sequencing approaches. PLoS ONE, 6(10), 1-10. https://doi.org/10.1371/journal.pone.0025776
Piñol, J., Senar, M. A., & Symondson, W. O. C. (2018). The choice of universal primers and the characteristics of the species mixture determines when DNA metabarcoding can be quantitative. Molecular Ecology, 28(2), 407-419.
Schirmer, M., Ijaz, U. Z., D'Amore, R., Hall, N., Sloan, W. T., & Quince, C. (2015). Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform. Nucleic Acids Research, 43(6), e37.
Schnell, I. B., Bohmann, K., & Gilbert, M. T. P. (2015). Tag jumps illuminated - Reducing sequence-to-sample misidentifications in metabarcoding studies. Molecular Ecology Resources, 15(6), 1289-1303.
Sheppard, S. K., Bell, J., Sunderland, K. D., Fenlon, J., Skervin, D., & Symondson, W. O. C. (2005). Detection of secondary predation by PCR analyses of the gut contents of invertebrate generalist predators. Molecular Ecology, 14(14), 4461-4468. https://doi.org/10.1111/j.1365-294X.2005.02742.x
Tercel, M. P. T. G., Symondson, W. O. C., & Cuff, J. P. (2021). The problem of omnivory: A synthesis on omnivory and DNA metabarcoding. Molecular Ecology, 30(10), 2199-2206. https://doi.org/10.1111/mec.15903
Thomas, A. C., Deagle, B. E., Eveson, J. P., Harsch, C. H., & Trites, A. W. (2016). Quantitative DNA metabarcoding: Improved estimates of species proportional biomass using correction factors derived from control material. Molecular Ecology Resources, 16, 714-726. https://doi.org/10.1111/1755-0998.12490
Zhang, G. K., Chain, F. J. J., Abbott, C. L., & Cristescu, M. E. (2018). Metabarcoding using multiplexed markers increases species detection in complex zooplankton communities. Evolutionary Applications, 11(10), 1901-1914. https://doi.org/10.1111/eva.12694
Zinger, L., Bonin, A., Alsos, I. G., Bálint, M., Bik, H., Boyer, F., Chariton, A. A., Creer, S., Coissac, E., Deagle, B. E., de Barba, M., Dickie, I. A., Dumbrell, A. J., Ficetola, G. F., Fierer, N., Fumagalli, L., Gilbert, M. T. P., Jarman, S., Jumpponen, A., … Taberlet, P. (2019). DNA metabarcoding-Need for robust experimental designs to draw sound ecological conclusions. Molecular Ecology, 28(8), 1857-1862.

Auteurs

Maximillian P T G Tercel (MPTG)

School of Biosciences, Cardiff University, Cardiff, UK.
Durrell Wildlife Conservation Trust, Trinity, Jersey, Channel Islands.

Jordan P Cuff (JP)

School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK.

Articles similaires

The dietary inflammatory index (DII

Qian Li, Yu Chen, Mei Yang et al.
1.00
Humans Female Adult Papillomavirus Infections Cross-Sectional Studies
DNA Methylation Humans DNA Animals Machine Learning
DNA Glycosylases Nucleosomes Humans 8-Hydroxy-2'-Deoxyguanosine DNA Repair

Classifications MeSH