An alanine to valine mutation of glutamyl-tRNA reductase enhances 5-aminolevulinic acid synthesis in rice.


Journal

TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik
ISSN: 1432-2242
Titre abrégé: Theor Appl Genet
Pays: Germany
ID NLM: 0145600

Informations de publication

Date de publication:
Aug 2022
Historique:
received: 20 01 2022
accepted: 07 06 2022
pubmed: 3 7 2022
medline: 29 7 2022
entrez: 2 7 2022
Statut: ppublish

Résumé

An alanine to valine mutation of glutamyl-tRNA reductase's 510th amino acid improves 5-aminolevulinic acid synthesis in rice. 5-aminolevulinic acid (ALA) is the common precursor of all tetrapyrroles and plays an important role in plant growth regulation. ALA is synthesized from glutamate, catalyzed by glutamyl-tRNA synthetase (GluRS), glutamyl-tRNA reductase (GluTR), and glutamate-1-semialdehyde aminotransferase (GSAT). In Arabidopsis, ALA synthesis is the rate-limiting step in tetrapyrrole production via GluTR post-translational regulations. In rice, mutations of GluTR and GSAT homologs are known to confer chlorophyll deficiency phenotypes; however, the enzymatic activity of rice GluRS, GluTR, and GSAT and the post-translational regulation of rice GluTR have not been investigated experimentally. We have demonstrated that a suppressor mutation in rice partially reverts the xantha trait. In the present study, we first determine that the suppressor mutation results from a G → A nucleotide substitution of OsGluTR (and an A → V change of its 510th amino acid). Protein homology modeling and molecular docking show that the OsGluTR

Identifiants

pubmed: 35779128
doi: 10.1007/s00122-022-04151-7
pii: 10.1007/s00122-022-04151-7
doi:

Substances chimiques

Arabidopsis Proteins 0
Aminolevulinic Acid 88755TAZ87
Aldehyde Oxidoreductases EC 1.2.-
glutamyl tRNA reductase EC 1.2.1.-
Valine HG18B9YRS7
Alanine OF5P57N2ZX

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2817-2831

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M et al (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174–178
pubmed: 22267009 doi: 10.1038/nbt.2095
Akram NA, Ashraf M (2013) Regulation in plant stress tolerance by a potential plant growth regulator, 5-aminolevulinic acid. J Plant Growth Regul 32:663–679
doi: 10.1007/s00344-013-9325-9
Alzohairy AM (2011) Bioedit: an important software for molecular biology. GERF Bull Biosci 2:60–61
Apitz J, Kenji NK, Schmied J, Wolf A, Hedtke B, Van WKJ, Grimm B (2016) Posttranslational control of ALA synthesis includes GluTR degradation by Clp protease and stabilization by GluTR-binding protein. Plant Physiol 170:1289–1298
doi: 10.1104/pp.15.01945
Beale SI (1999) Enzymes of chlorophyll biosynthesis. Photosynth Res 60:43–73
doi: 10.1023/A:1006297731456
Berman HM, Westbrook J, Feng Z, Gilliland GL, Bourne PE (2000) The protein data bank. Nucl Acids Res 28:235–242
pubmed: 10592235 pmcid: 102472 doi: 10.1093/nar/28.1.235
Chen Y, Shen J, Zhang L, Qi H, Yang L, Wang H, Wang J, Wang Y, Du H, Tao Z, Zhao T, Deng P, Shu Q, Qian Q, Yu H, Song S (2021) Nuclear translocation of OsMFT1 that is impeded by OsFTIP1 promotes drought tolerance in rice. Mol Plant 14:1297–1311
pubmed: 33962060 doi: 10.1016/j.molp.2021.05.001
Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of drosophila melanogaster strain w1118; iso-2; iso-3. Fly (austin) 6:80–92
doi: 10.4161/fly.19695
Czarnecki O, Hedtke B, Melzer M, Rothbart M, Richter A, Schroter Y, Pfannschmidt T, Grimm B (2011) An Arabidopsis GluTR ation of 5-aminolevulinic acid synthbinding protein mediates spatial separesis in chloroplasts. Plant Cell 23:4476–4491
pubmed: 22180625 pmcid: 3269878 doi: 10.1105/tpc.111.086421
Dai S, Wang BQ, Song Y, Xie ZM, Li C, Li S, Huang Y, Jiang M (2021) Astaxanthin and its gold nanoparticles mitigate cadmium toxicity in rice by inhibiting cadmium translocation and uptake. Sci Total Environ 786:147496
pubmed: 33984703 doi: 10.1016/j.scitotenv.2021.147496
Fan N, Fu N, Zhang N (2019) Progress in molecular docking. Quant Biol 7:83–89
doi: 10.1007/s40484-019-0172-y
Fu HW, Wang CX, Shu XL, Li YF, Wu DX, Shu QY (2007) Microsatellite analysis for revealing parentage of gamma ray-induced mutants in rice (Oryza sativa L.). Isr J Plant Sci 55:201–206
doi: 10.1560/IJPS.55.2.201
Fu HW, Li YF, Shu QY (2008) A revisit of mutation induction by gamma rays in rice (Oryza sativa L.): implications of microsatellite markers for quality control. Mol Breed 22(2):281–288
doi: 10.1007/s11032-008-9173-7
Goslings D, Meskauskiene R, Kim C, Lee KP, Nater M, Apel K (2004) Concurrent interactions of heme and FLU with Glu-tRNA reductase (HEMA1), the target of metabolic feedback inhibition of tetrapyrrole biosynthesis, in dark- and light-grown Arabidopsis plants. Plant J 40:957–967
pubmed: 15584960 doi: 10.1111/j.1365-313X.2004.02262.x
Gruntman E, Qi Y, Slotkin RK, Roeder T, Martienssen RA, Sachidanandam R (2008) Kismeth: analyzer of plant methylation states through bisulfite sequence. BMC Bioinform 9:371
doi: 10.1186/1471-2105-9-371
Ilag LL, Kumar AM, Söll D (1994) Light regulation of chlorophyll biosynthesis at the level of 5-aminolevulinate formation in Arabidopsis. Plant Cell 6:265–275
pubmed: 7908550 pmcid: 160432
Jiang M, Liu YH, Li RQ, Zheng YC, Fu HW, Tan YY, Moller IM, Fan LJ, Shu QY, Huang JZ (2019) A suppressor mutation partially reverts the xantha trait via lowered methylation in the promoter of genomes uncoupled 4 in rice. Front Plant Sci 10:1003
pubmed: 31428119 pmcid: 6688194 doi: 10.3389/fpls.2019.01003
Jiang M, Wu XJ, Song Y, Shen HZ, Cui HR (2020) Effects of OsMSH6 mutations on microsatellite stability and homeologous recombination in rice. Front Plant Sci 11:220
pubmed: 32194600 pmcid: 7062918 doi: 10.3389/fpls.2020.00220
Jiang M, Dai S, Wang BQ, Xie ZM, Li JL, Wang LY, Li S, Tan YY, Tian B, Shu QY, Huang JZ (2021) Gold nanoparticles synthesized using melatonin suppress cadmium uptake and alleviate its toxicity in rice. Environ Sci Nano 8:1042–1056
doi: 10.1039/D0EN01172J
Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282
pubmed: 1633570
Kauss D, Bischof S, Steiner S, Apel K, Meskauskiene R (2012) FLU, a negative feedback regulator of tetrapyrrole biosynthesis, is physically linked to the final steps of the Mg++-branch of this pathway. FEBS Lett 586:211–216
pubmed: 22212719 doi: 10.1016/j.febslet.2011.12.029
Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549
pubmed: 29722887 pmcid: 5967553 doi: 10.1093/molbev/msy096
Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26:589–595
pubmed: 20080505 pmcid: 2828108 doi: 10.1093/bioinformatics/btp698
Li RQ, Huang JZ, Zhao HJ, Fu HW, Li YF, Liu GZ, Shu QY (2014) A down-regulated epi-allele of the genomes uncoupled 4 gene generates a xantha marker trait in rice. Theor Appl Genet 127:491–501
Li RQ, Jiang M, Liu YH, Zheng YC, Huang JZ, Wu JM, Shu QY (2017) The xantha marker trait is associated with altered tetrapyrrole biosynthesis and deregulated transcription of PhANGs in rice. Front Plant Sci 8:901
pubmed: 28620402 pmcid: 5449477 doi: 10.3389/fpls.2017.00901
Li RQ, Jiang M, Huang JZ, Moller IM, Shu QY (2021a) Mutations of the genomes uncoupled 4 gene cause ROS accumulation and repress expression of peroxidase genes in rice. Front Plant Sci 12:682453
pubmed: 34178000 pmcid: 8232891 doi: 10.3389/fpls.2021.682453
Li RQ, Jiang M, Zheng WY, Zhang HL (2021b) GUN4-mediated tetrapyrrole metabolites regulates starch biosynthesis during early seed development in rice. J Cereal Sci 101:103317
doi: 10.1016/j.jcs.2021.103317
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta c (t)) method. Methods 25:402–408
pubmed: 11846609
Matsumoto F, Obayashi T, Sasaki-Sekimoto Y, Ohta H, Takamiya K, Masuda T (2004) Gene expression profiling of the tetrapyrrole metabolic pathway in Arabidopsis with a mini-array system. Plant Physiol 135:2379–2391
pubmed: 15326282 pmcid: 520805 doi: 10.1104/pp.104.042408
Mauzerall D, Granick S (1956) The occurrence and determination of d-aminolevulinic acid and porphobilinogen in urine. J Biol Chem 219:435–446
pubmed: 13295297 doi: 10.1016/S0021-9258(18)65809-0
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M et al (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303
pubmed: 20644199 pmcid: 2928508 doi: 10.1101/gr.107524.110
Meskauskiene R, Nater M, Goslings D, Kessler F, Camp R, Apel K (2001) FLU: A negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 98:12826–12831
pubmed: 11606728 pmcid: 60138 doi: 10.1073/pnas.221252798
Mochizuki N, Tanaka R, Grimm B, Masuda T, Moulin M, Smith AG, Tanaka A, Terry MJ (2010) The cell biology of tetrapyrroles: a life and death struggle. Trends Plant Sci 15:488–498
pubmed: 20598625 doi: 10.1016/j.tplants.2010.05.012
Moser J, Schubert WD, Beier V, Bringemeier I, Jahn D, Heinz DW (2001) V-shaped structure of glutamyl-tRNA reductase, the first enzyme of tRNA-dependent tetrapyrrole biosynthesis. EMBO J 20:6583–6590
pubmed: 11726494 pmcid: 125327 doi: 10.1093/emboj/20.23.6583
Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497
doi: 10.1111/j.1399-3054.1962.tb08052.x
Nagai S, Koide M, Takahashi S, Kikuta A, Aono M, Sasaki-Sekimoto OH, Takamiya K, Masuda T (2007) Induction of isoforms of tetrapyrrole biosynthetic enzymes, AtHEMA2 and AtFC1, under stress conditions and their physiological functions in Arabidopsis. Plant Physiol 144:1039–1051
pubmed: 17416636 pmcid: 1914178 doi: 10.1104/pp.107.100065
Nogaj LA, Beale SI (2005) Physical and kinetic interactions between glutamyl-tRNA reductase and glutamate-1-semialdehyde aminotransferase of Chlamydomonas reinhardtii. J Biol Chem 280:24301–24307
pubmed: 15890644 doi: 10.1074/jbc.M502483200
Pontoppidan B, Kannangara CG (1994) Purification and partial characterizationof barley glutamyl-tRNA(Glu) reductase, the enzyme that directs glutamate tochlorophyll biosynthesis. Eur J Biochem 225:529–537
pubmed: 7957167 doi: 10.1111/j.1432-1033.1994.00529.x
Porra RJ, Klein O, Wright PE (1983) Proof by
pubmed: 6130943 doi: 10.1111/j.1432-1033.1983.tb07179.x
Rebeiz CA, Montazer-Zouhoor A, Mayasich JM, Tripathy BC, Wu SM, Rebeiz CC, Friedmann HC (1988) Photodynamic herbicides. Recent developments and molecular basis of selectivity. Crit Rev Plant Sci 6:385–436
doi: 10.1080/07352688809382256
Song Y, Jiang M, Zhang HL, Li RQ (2021) Zinc oxide nanoparticles alleviate chilling stress in rice (Oryza Sativa L.) by regulating antioxidative system and chilling response transcription factors. Molecules 26(8):2196
pubmed: 33920363 pmcid: 8069548 doi: 10.3390/molecules26082196
Srivastava A, Beale SI (2005) Glutamyl-tRNA reductase of Chlorobium vibrioforme is a dissociable homodimer that contains one tightly bound heme per subunit. J Bacteriol 187:4444–4450
pubmed: 15968053 pmcid: 1151790 doi: 10.1128/JB.187.13.4444-4450.2005
Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S et al (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183
pubmed: 23289725 doi: 10.1111/tpj.12105
Tan YY, Fu HW, Zhao HJ, Lu S, Fu JJ, Li YF, Cui HR, Shu QY (2013) Functional molecular markers and high-resolution melting curve analysis of low phytic acid mutations for marker-assisted selection in rice. Mol Breed 31:517–528
doi: 10.1007/s11032-012-9809-5
Tanaka R, Tanaka A (2007) Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol 58:321–346
pubmed: 17227226 doi: 10.1146/annurev.arplant.57.032905.105448
The 3000 Rice Genomes Project (2014) The 3000 rice genomes project. GigaScience 3:7
doi: 10.1186/2047-217X-3-7
Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461
pubmed: 19499576 pmcid: 3041641
Tu JM, Ona I, Zhang QF, Mew TW, Khush GS, Datta SK (1998) Transgenic rice variety ‘IR72’ with Xa21 is resistance to bacterial blight. Theor Appl Genet 97:31–36
doi: 10.1007/s001220050863
Vothknecht UC, Kannangara CG, Von Wettstein D (1996) Expression of catalytically active barley glutamyl tRNA
pubmed: 8799193 pmcid: 38634 doi: 10.1073/pnas.93.17.9287
Vothknecht UC, Kannangara CG, Von Wettstein D (1998) Barley glutamyl tRNA
pubmed: 9461671 doi: 10.1016/S0031-9422(97)00538-4
Wang Q, Zhu B, Chen C, Yuan Z, Guo J, Yang X, Wang S, Lv Y, Liu Q, Yang B, Sun C, Wang P, Deng X (2021) A single nucleotide substitution of GSAM gene causes massive accumulation of glutamate 1-semialdehyde and yellow leaf phenotype in rice. Rice 14:50
pubmed: 34089406 pmcid: 8179877 doi: 10.1186/s12284-021-00492-x
Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucl Acids Res 46:296–303
doi: 10.1093/nar/gky427
Wu Y, Liao W, Dawuda MM, Hu L, Yu J (2019) 5-Aminolevulinic acid (ALA) biosynthetic and metabolic pathways and its role in higher plants: a review. Plant Growth Regul 87:357–374
doi: 10.1007/s10725-018-0463-8
Yarra R, Sahoo L (2021) Base editing in rice: current progress, advances, limitations, and future perspectives. Plant Cell Rep 40:595–604
pubmed: 33423074 doi: 10.1007/s00299-020-02656-3
Zeng Z, Lin T, Zhao J, Zheng T, Xu L, Wang Y, Liu L, Jiang L, Chen S, Wan J (2020) OsHemA gene, encoding glutamyl-tRNA reductase (GluTR) is essential for chlorophyll biosynthesis in rice (Oryza sativa). J Integr Agric 19:16–27
Zhang HL, Huang JZ, Chen XY, Tan YY, Shu QY (2014) Competitive amplification of differentially melting amplicons facilitates efficient genotyping of photoperiod-and temperature-sensitive genic male sterility in rice. Mol Breed 34:1765–1776
doi: 10.1007/s11032-014-0136-x
Zhang M, Zhang F, Fang Y, Chen X, Chen Y, Zhang W, Dai H, Lin R, Lin L (2015) The non-canonical tetratricopeptide repeat (TPR) domain of fluorescent (FLU) mediates complex formation with Glutamyl-tRNA reductase. J Biol Chem 290:17559–17565
pubmed: 26037924 pmcid: 4498089 doi: 10.1074/jbc.M115.662981
Zhao A, Fang Y, Chen X, Zhao S, Dong W, Lin Y, Gong W, Liu L (2014) Crystal structure of Arabidopsis glutamyl-tRNA reductase in complex with its stimulator protein. Proc Natl Acad Sci USA 111:6630–6635
pubmed: 24753615 pmcid: 4020052 doi: 10.1073/pnas.1400166111
Zhou XS, Shen SQ, Wu DX, Sun JW, Shu QY (2006) Introduction of a xantha mutation for testing and increasing varietal purity in hybrid rice. Field Crop Res 96:71–79
doi: 10.1016/j.fcr.2005.05.008

Auteurs

Meng Jiang (M)

National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, 310058, China.
Hainan Institute of Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, 572000, Hainan, China.
Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, 310058, China.

Shang Dai (S)

MOE Key Laboratory of Biosystems Homeostasis and Protection, Zhejiang University, Hangzhou, 310058, China.

Yun-Chao Zheng (YC)

National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, 310058, China.

Rui-Qing Li (RQ)

College of Agronomy, Anhui Agricultural University, Hefei, 230036, China.

Yuan-Yuan Tan (YY)

National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, 310058, China.

Gang Pan (G)

National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, 310058, China.

Ian Max Møller (IM)

Department of Molecular Biology and Genetics, Aarhus University, 4200, Slagelse, Denmark.

Shi-Yong Song (SY)

National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, 310058, China.

Jian-Zhong Huang (JZ)

National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, 310058, China. jzhuang@zju.edu.cn.
Hainan Institute of Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, 572000, Hainan, China. jzhuang@zju.edu.cn.
Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, 310058, China. jzhuang@zju.edu.cn.

Qing-Yao Shu (QY)

National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, 310058, China. qyshu@zju.edu.cn.
Hainan Institute of Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya, 572000, Hainan, China. qyshu@zju.edu.cn.

Articles similaires

T-Lymphocytes, Regulatory Lung Neoplasms Proto-Oncogene Proteins p21(ras) Animals Humans

Pathogenic mitochondrial DNA mutations inhibit melanoma metastasis.

Spencer D Shelton, Sara House, Luiza Martins Nascentes Melo et al.
1.00
DNA, Mitochondrial Humans Melanoma Mutation Neoplasm Metastasis
Animals Hemiptera Insect Proteins Phylogeny Insecticides

Prevalence and implications of fragile X premutation screening in Thailand.

Areerat Hnoonual, Sunita Kaewfai, Chanin Limwongse et al.
1.00
Humans Fragile X Mental Retardation Protein Thailand Male Female

Classifications MeSH