Genome doubling enabled the expansion of yeast vesicle traffic pathways.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
02 07 2022
Historique:
received: 31 01 2022
accepted: 23 06 2022
entrez: 2 7 2022
pubmed: 3 7 2022
medline: 8 7 2022
Statut: epublish

Résumé

Vesicle budding and fusion in eukaryotes depend on a suite of protein types, such as Arfs, Rabs, coats and SNAREs. Distinct paralogs of these proteins act at distinct intracellular locations, suggesting a link between gene duplication and the expansion of vesicle traffic pathways. Genome doubling, a common source of paralogous genes in fungi, provides an ideal setting in which to explore this link. Here we trace the fates of paralog doublets derived from the 100-Ma-old hybridization event that gave rise to the whole genome duplication clade of budding yeast. We find that paralog doublets involved in specific vesicle traffic functions and pathways are convergently retained across the entire clade. Vesicle coats and adaptors involved in secretory and early-endocytic pathways are retained as doublets, at rates several-fold higher than expected by chance. Proteins involved in later endocytic steps and intra-Golgi traffic, including the entire set of multi-subunit and coiled-coil tethers, have reverted to singletons. These patterns demonstrate that selection has acted to expand and diversify the yeast vesicle traffic apparatus, across species and time.

Identifiants

pubmed: 35780185
doi: 10.1038/s41598-022-15419-9
pii: 10.1038/s41598-022-15419-9
pmc: PMC9250509
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

11213

Informations de copyright

© 2022. The Author(s).

Références

J Cell Sci. 2020 Feb 12;133(3):
pubmed: 31964712
Dev Cell. 2018 Jan 8;44(1):56-72.e4
pubmed: 29316441
Nucleic Acids Res. 2021 Jan 8;49(D1):D394-D403
pubmed: 33290554
Biophys J. 2013 Jun 4;104(11):2553-63
pubmed: 23746528
Biol Cell. 2009 Sep;101(9):495-509
pubmed: 19566487
Genetics. 2001 Mar;157(3):1117-40
pubmed: 11238399
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D452-5
pubmed: 16381909
Proc Natl Acad Sci U S A. 2007 May 15;104(20):8397-402
pubmed: 17494770
Proc Natl Acad Sci U S A. 2006 Mar 14;103(11):4116-21
pubmed: 16537494
PLoS Biol. 2006 Apr;4(4):e109
pubmed: 16555924
Proc Natl Acad Sci U S A. 2009 May 5;106(18):7273-80
pubmed: 19351897
Mol Biol Cell. 2002 Jul;13(7):2518-32
pubmed: 12134087
J Biol Chem. 2000 Apr 14;275(15):11521-8
pubmed: 10753972
Mol Biol Cell. 2001 Jan;12(1):221-38
pubmed: 11160834
Proc Biol Sci. 2017 Aug 30;284(1861):
pubmed: 28835561
Microbiol Mol Biol Rev. 2012 Dec;76(4):721-39
pubmed: 23204364
Nat Rev Genet. 2010 Feb;11(2):97-108
pubmed: 20051986
Mol Biol Cell. 2017 Dec 1;28(25):3660-3671
pubmed: 28978742
Front Cell Dev Biol. 2016 May 09;4:35
pubmed: 27243003
Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):2967-71
pubmed: 20080574
Nat Rev Genet. 2007 Oct;8(10):762-75
pubmed: 17846636
Mol Biol Evol. 2017 Jul 1;34(7):1596-1612
pubmed: 28369610
DNA Res. 2016 Feb;23(1):67-80
pubmed: 26732986
PLoS Biol. 2017 May 16;15(5):e2002128
pubmed: 28510588
Mol Biol Evol. 2021 Apr 13;38(4):1384-1401
pubmed: 33252673
Elife. 2020 Jun 25;9:
pubmed: 32584255
Trends Cell Biol. 2015 Jul;25(7):408-16
pubmed: 25795254
Curr Opin Cell Biol. 2018 Aug;53:70-76
pubmed: 29929066
PLoS Genet. 2018 May 25;14(5):e1007396
pubmed: 29799840
Dev Cell. 2007 May;12(5):671-82
pubmed: 17488620
Trends Ecol Evol. 2006 May;21(5):230-2
pubmed: 16697908
Genome Res. 2005 Apr;15(4):552-9
pubmed: 15805495
Science. 2020 Jun 26;368(6498):
pubmed: 32586993
Annu Rev Genet. 2018 Nov 23;52:159-183
pubmed: 30183405
Nat Rev Genet. 2017 Jul;18(7):411-424
pubmed: 28502977
J Cell Sci. 2012 May 15;125(Pt 10):2500-8
pubmed: 22366452
Elife. 2020 Aug 03;9:
pubmed: 32744498
Mol Biol Cell. 2008 May;19(5):1991-2002
pubmed: 18287542
Proc Natl Acad Sci U S A. 2011 Aug 30;108(35):14539-44
pubmed: 21873232
Nucleic Acids Res. 2012 Jan;40(Database issue):D700-5
pubmed: 22110037
Genome Res. 2003 Oct;13(10):2229-35
pubmed: 14525925
Mol Biol Cell. 2019 May 15;30(11):1249-1271
pubmed: 31084567
Curr Biol. 2015 Feb 16;25(4):403-12
pubmed: 25619760
Proc Biol Sci. 2012 Jul 7;279(1738):2497-509
pubmed: 22492065
Trends Cell Biol. 2014 Jul;24(7):435-42
pubmed: 24656655
Sci Rep. 2018 Jul 24;8(1):11154
pubmed: 30042439
Mol Biol Cell. 2002 Sep;13(9):3005-28
pubmed: 12221112
Proc Natl Acad Sci U S A. 2021 Feb 9;118(6):
pubmed: 33526669
Biol Direct. 2011 Feb 18;6:11
pubmed: 21333002
Cell Rep. 2015 Dec 22;13(11):2516-2526
pubmed: 26686636
Cell. 2004 Jan 23;116(2):153-66
pubmed: 14744428
G3 (Bethesda). 2016 Dec 7;6(12):3927-3939
pubmed: 27672114
J Cell Sci. 2016 Apr 15;129(8):1531-6
pubmed: 27084361
Nucleic Acids Res. 2019 Jan 8;47(D1):D607-D613
pubmed: 30476243
Genome Biol Evol. 2015 Mar 05;7(4):1098-109
pubmed: 25747251
G3 (Bethesda). 2019 Mar 7;9(3):867-877
pubmed: 30679249
Mol Syst Biol. 2007;3:129
pubmed: 17667951
Nat Commun. 2019 Sep 11;10(1):4126
pubmed: 31511504
J Cell Sci. 2011 Jan 1;124(Pt 1):1-4
pubmed: 21172817
Dev Cell. 2014 Sep 8;30(5):610-24
pubmed: 25203211
J Cell Biol. 2020 Aug 3;219(8):
pubmed: 32421152
Elife. 2013 Jun 18;2:e00603
pubmed: 23795289
Nature. 2015 Mar 19;519(7543):349-52
pubmed: 25731168
G3 (Bethesda). 2012 Feb;2(2):299-311
pubmed: 22384408
Curr Opin Cell Biol. 2017 Aug;47:108-116
pubmed: 28622586
Cell. 2018 Nov 29;175(6):1533-1545.e20
pubmed: 30415838
Genome Res. 2014 Oct;24(10):1665-75
pubmed: 25085612
Mol Biol Cell. 2010 Oct 15;21(20):3552-66
pubmed: 20739461
Trends Genet. 2022 Jan;38(1):59-72
pubmed: 34294428
PLoS Biol. 2015 Aug 07;13(8):e1002220
pubmed: 26252497
Curr Biol. 2010 Nov 9;20(21):R943-52
pubmed: 21056839
FEMS Yeast Res. 2020 Aug 1;20(5):
pubmed: 32658267

Auteurs

Ramya Purkanti (R)

Center for Integrative Genomics, Université de Lausanne, Lausanne, Switzerland.

Mukund Thattai (M)

Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India. thattai@ncbs.res.in.

Articles similaires

Saccharomyces cerevisiae Aldehydes Biotransformation Flavoring Agents Lipoxygenase
1.00
Saccharomyces cerevisiae Lysine Cell Nucleolus RNA, Ribosomal Saccharomyces cerevisiae Proteins
Metabolic Networks and Pathways Saccharomyces cerevisiae Computational Biology Synthetic Biology Computer Simulation
Citrus Phenylalanine Ammonia-Lyase Stress, Physiological Multigene Family Phylogeny

Classifications MeSH