Prediction of postoperative cardiac events in multiple surgical cohorts using a multimodal and integrative decision support system.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
05 07 2022
05 07 2022
Historique:
received:
02
02
2022
accepted:
24
06
2022
entrez:
5
7
2022
pubmed:
6
7
2022
medline:
8
7
2022
Statut:
epublish
Résumé
Postoperative patients are at risk of life-threatening complications such as hemodynamic decompensation or arrhythmia. Automated detection of patients with such risks via a real-time clinical decision support system may provide opportunities for early and timely interventions that can significantly improve patient outcomes. We utilize multimodal features derived from digital signal processing techniques and tensor formation, as well as the electronic health record (EHR), to create machine learning models that predict the occurrence of several life-threatening complications up to 4 hours prior to the event. In order to ensure that our models are generalizable across different surgical cohorts, we trained the models on a cardiac surgery cohort and tested them on vascular and non-cardiac acute surgery cohorts. The best performing models achieved an area under the receiver operating characteristic curve (AUROC) of 0.94 on training and 0.94 and 0.82, respectively, on testing for the 0.5-hour interval. The AUROCs only slightly dropped to 0.93, 0.92, and 0.77, respectively, for the 4-hour interval. This study serves as a proof-of-concept that EHR data and physiologic waveform data can be combined to enable the early detection of postoperative deterioration events.
Identifiants
pubmed: 35790802
doi: 10.1038/s41598-022-15496-w
pii: 10.1038/s41598-022-15496-w
pmc: PMC9256604
doi:
Types de publication
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
11347Subventions
Organisme : NIGMS NIH HHS
ID : T32 GM007863
Pays : United States
Informations de copyright
© 2022. The Author(s).
Références
J Med Eng Technol. 2016;40(3):87-98
pubmed: 27028609
J Med Syst. 2016 Jul;40(7):178
pubmed: 27286983
PLoS One. 2015 Mar 20;10(3):e0118504
pubmed: 25793605
PLoS One. 2014 Nov 13;9(11):e112944
pubmed: 25393305
Entropy (Basel). 2019 Apr 28;21(5):
pubmed: 33267156
Med Pregl. 2015 May-Jun;68(5-6):157-61
pubmed: 26234022
Crit Care Med. 1985 Oct;13(10):818-29
pubmed: 3928249
BMC Med Inform Decis Mak. 2015 May 20;15:39
pubmed: 25991003
Stud Health Technol Inform. 2015;216:40-4
pubmed: 26262006
PLoS One. 2016 Feb 12;11(2):e0148544
pubmed: 26871715
Artif Intell Med. 2021 Mar;113:102032
pubmed: 33685593
JAMA. 1993 Dec 22-29;270(24):2957-63
pubmed: 8254858
JAMA. 2001 Oct 10;286(14):1754-8
pubmed: 11594901
Aging (Albany NY). 2018 Feb 23;10(2):166-177
pubmed: 29476045
Clin Perinatol. 2017 Sep;44(3):713-728
pubmed: 28802348
J Surg Res. 2021 Feb;258:47-53
pubmed: 32987224
Anesth Analg. 2006 May;102(5):1525-37
pubmed: 16632837
Ann Thorac Surg. 2018 May;105(5):1419-1428
pubmed: 29577924