Actin-bundling protein fimbrin regulates pathogenicity via organizing F-actin dynamics during appressorium development in Colletotrichum gloeosporioides.
Colletotrichum gloeosporioides
actin cytoskeleton
appressorium
fimbrin
pore
septin
Journal
Molecular plant pathology
ISSN: 1364-3703
Titre abrégé: Mol Plant Pathol
Pays: England
ID NLM: 100954969
Informations de publication
Date de publication:
10 2022
10 2022
Historique:
revised:
12
06
2022
received:
09
05
2022
accepted:
14
06
2022
pubmed:
6
7
2022
medline:
11
9
2022
entrez:
5
7
2022
Statut:
ppublish
Résumé
Anthracnose caused by Colletotrichum gloeosporioides leads to serious economic loss to rubber tree yield and other tropical crops. The appressorium, a specialized dome-shaped infection structure, plays a crucial role in the pathogenesis of C. gloeosporioides. However, the mechanism of how actin cytoskeleton dynamics regulate appressorium formation and penetration remains poorly defined in C. gloeosporioides. In this study, an actin cross-linking protein fimbrin homologue (CgFim1) was identified in C. gloeosporioides, and the knockout of CgFim1 led to impairment in vegetative growth, conidiation, and pathogenicity. We then investigated the roles of CgFim1 in the dynamic organization of the actin cytoskeleton. We observed that actin patches and cables localized at the apical and subapical regions of the hyphal tip, and showed a disc-to-ring dynamic around the pore during appressorium development. CgFim1 showed a similar distribution pattern to the actin cytoskeleton. Moreover, knockout of CgFim1 affected the polarity of the actin cytoskeleton in the hyphal tip and disrupted the actin dynamics and ring structure formation in the appressorium, which prevented polar growth and appressorium development. The CgFim1 mutant also interfered with the septin structure formation. This caused defects in pore wall overlay formation, pore contraction, and the extension of the penetration peg. These results reveal the mechanism by which CgFim1 regulates the growth and pathogenicity of C. gloeosporioides by organizing the actin cytoskeleton.
Identifiants
pubmed: 35791045
doi: 10.1111/mpp.13242
pmc: PMC9452767
doi:
Substances chimiques
Actins
0
Fungal Proteins
0
Membrane Glycoproteins
0
Microfilament Proteins
0
plastin
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1472-1486Informations de copyright
© 2022 The Authors. Molecular Plant Pathology published by British Society for Plant Pathology and John Wiley & Sons Ltd.
Références
Appl Microbiol Biotechnol. 2021 Oct;105(19):7395-7410
pubmed: 34536105
J Cell Biol. 1984 Mar;98(3):922-33
pubmed: 6365930
Nat Rev Microbiol. 2011 Nov 02;9(12):876-87
pubmed: 22048737
Plant Cell. 2009 Dec;21(12):3868-84
pubmed: 20023198
Fungal Genet Biol. 2010 Jul;47(7):573-86
pubmed: 20302965
Curr Opin Microbiol. 2014 Aug;20:34-41
pubmed: 24879477
Proc Natl Acad Sci U S A. 2010 Sep 14;107(37):16390-5
pubmed: 20805480
Mol Plant Pathol. 2013 Jun;14(5):470-82
pubmed: 23384308
Nat Methods. 2008 Jul;5(7):605-7
pubmed: 18536722
Plant J. 2000 Dec;24(5):625-36
pubmed: 11123801
PLoS Genet. 2017 May 25;13(5):e1006814
pubmed: 28542408
Nucleic Acids Res. 2021 Jan 8;49(D1):D458-D460
pubmed: 33104802
Mol Plant Pathol. 2001 Nov 1;2(6):303-9
pubmed: 20573019
Curr Opin Microbiol. 2014 Aug;20:27-33
pubmed: 24858006
Mycologia. 2016 May-Jun;108(3):506-14
pubmed: 26297784
Annu Rev Microbiol. 2013;67:587-609
pubmed: 23808332
Curr Biol. 2019 Mar 4;29(5):R144-R146
pubmed: 30836078
Curr Biol. 2010 Aug 24;20(16):1415-22
pubmed: 20705466
J Cell Biol. 1980 Jul;86(1):335-40
pubmed: 6998986
Nat Microbiol. 2020 Dec;5(12):1565-1575
pubmed: 32958858
Fungal Biol. 2016 Oct;120(10):1225-35
pubmed: 27647239
Proc Natl Acad Sci U S A. 2013 Feb 19;110(8):3179-84
pubmed: 23382235
Microbiol Mol Biol Rev. 2018 Apr 11;82(2):
pubmed: 29643171
Curr Opin Microbiol. 2003 Dec;6(6):628-33
pubmed: 14662360
J Fungi (Basel). 2022 Feb 11;8(2):
pubmed: 35205929
Nature. 2019 Oct;574(7778):423-427
pubmed: 31597961
J Biol Chem. 2011 Jul 29;286(30):26964-77
pubmed: 21642440
Mol Plant Pathol. 2022 Oct;23(10):1472-1486
pubmed: 35791045
Mol Plant Pathol. 2012 May;13(4):414-30
pubmed: 22471698
Elife. 2019 Jun 10;8:
pubmed: 31180322
Nat Rev Microbiol. 2009 Mar;7(3):185-95
pubmed: 19219052
Plant Cell. 2010 Jul;22(7):2417-28
pubmed: 20639448
Mol Microbiol. 2008 Feb;67(4):891-905
pubmed: 18179595
Fungal Genet Biol. 2012 Jun;49(6):483-97
pubmed: 22503771
Plant Cell. 2012 Nov;24(11):4539-54
pubmed: 23150633
Plant Cell. 2015 Nov;27(11):3277-89
pubmed: 26566920
Mol Biol Evol. 2021 Jun 25;38(7):3022-3027
pubmed: 33892491
PLoS Pathog. 2020 Mar 16;16(3):e1008437
pubmed: 32176741
Mol Plant Microbe Interact. 2019 Apr;32(4):437-451
pubmed: 30451565
Mol Microbiol. 2008 May;68(3):690-705
pubmed: 18331474
Mol Plant Pathol. 2005 Sep 1;6(5):561-75
pubmed: 20565680
Science. 2012 Jun 22;336(6088):1590-5
pubmed: 22723425
Plant Cell. 2010 Nov;22(11):3745-63
pubmed: 21098731
Curr Issues Mol Biol. 2021 Oct 11;43(3):1548-1557
pubmed: 34698108
Nat Microbiol. 2020 Dec;5(12):1472-1480
pubmed: 32929190
Microsc Microanal. 2016 Apr;22(2):264-74
pubmed: 26879694
PLoS Pathog. 2012;8(4):e1002643
pubmed: 22496661
Microbiol Res. 2011 Mar 20;166(3):137-45
pubmed: 21237627
PLoS Pathog. 2017 Jul 24;13(7):e1006516
pubmed: 28742127
Nat Genet. 2012 Sep;44(9):1060-5
pubmed: 22885923
J Cell Sci. 2021 Feb 25;134(5):
pubmed: 33414165