Phosphorylation of SAMHD1 Thr592 increases C-terminal domain dynamics, tetramer dissociation and ssDNA binding kinetics.
Journal
Nucleic acids research
ISSN: 1362-4962
Titre abrégé: Nucleic Acids Res
Pays: England
ID NLM: 0411011
Informations de publication
Date de publication:
22 07 2022
22 07 2022
Historique:
accepted:
06
07
2022
revised:
24
05
2022
received:
07
04
2022
pubmed:
9
7
2022
medline:
26
7
2022
entrez:
8
7
2022
Statut:
ppublish
Résumé
SAM and HD domain containing deoxynucleoside triphosphate triphosphohydrolase 1 (SAMHD1) is driven into its activated tetramer form by binding of GTP activator and dNTP activators/substrates. In addition, the inactive monomeric and dimeric forms of the enzyme bind to single-stranded (ss) nucleic acids. During DNA replication SAMHD1 can be phosphorylated by CDK1 and CDK2 at its C-terminal threonine 592 (pSAMHD1), localizing the enzyme to stalled replication forks (RFs) to promote their restart. Although phosphorylation has only a small effect on the dNTPase activity and ssDNA binding affinity of SAMHD1, perturbation of the native T592 by phosphorylation decreased the thermal stability of tetrameric SAMHD1 and accelerated tetramer dissociation in the absence and presence of ssDNA (∼15-fold). In addition, we found that ssDNA binds competitively with GTP to the A1 site. A full-length SAMHD1 cryo-EM structure revealed substantial dynamics in the C-terminal domain (which contains T592), which could be modulated by phosphorylation. We propose that T592 phosphorylation increases tetramer dynamics and allows invasion of ssDNA into the A1 site and the previously characterized DNA binding surface at the dimer-dimer interface. These features are consistent with rapid and regiospecific inactivation of pSAMHD1 dNTPase at RFs or other sites of free ssDNA in cells.
Identifiants
pubmed: 35801923
pii: 6633887
doi: 10.1093/nar/gkac573
pmc: PMC9303311
doi:
Substances chimiques
DNA, Single-Stranded
0
Guanosine Triphosphate
86-01-1
SAM Domain and HD Domain-Containing Protein 1
EC 3.1.5.-
SAMHD1 protein, human
EC 3.1.5.-
Monomeric GTP-Binding Proteins
EC 3.6.5.2
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
7545-7559Subventions
Organisme : NCI NIH HHS
ID : R01 CA233567
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM056834
Pays : United States
Organisme : NCI NIH HHS
ID : T32 CA009110
Pays : United States
Informations de copyright
© The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research.
Références
Nat Methods. 2014 Jan;11(1):63-5
pubmed: 24213166
J Struct Biol. 2015 Nov;192(2):216-21
pubmed: 26278980
Front Mol Biosci. 2021 Aug 26;8:724870
pubmed: 34513928
Nature. 2018 May;557(7703):57-61
pubmed: 29670289
J Am Chem Soc. 2014 Jul 16;136(28):9822-5
pubmed: 24983818
Protein Sci. 2021 Jan;30(1):70-82
pubmed: 32881101
Nature. 2014 Jan 9;505(7482):234-8
pubmed: 24336198
PLoS Pathog. 2015 Oct 02;11(10):e1005194
pubmed: 26431200
Nucleic Acids Res. 2015 Jul 27;43(13):6486-99
pubmed: 26101257
Nature. 2011 Jun 29;474(7353):658-61
pubmed: 21720370
Cell Rep. 2016 Aug 9;16(6):1492-1501
pubmed: 27477283
Cell Host Microbe. 2015 Apr 8;17(4):489-99
pubmed: 25856754
Cell Host Microbe. 2013 Apr 17;13(4):441-51
pubmed: 23601106
Proc Natl Acad Sci U S A. 2014 May 6;111(18):E1843-51
pubmed: 24753578
SLAS Discov. 2019 Jun;24(5):606-612
pubmed: 30744467
Proc Natl Acad Sci U S A. 2014 Oct 14;111(41):E4305-14
pubmed: 25267621
J Comput Chem. 2004 Oct;25(13):1605-12
pubmed: 15264254
J Biol Chem. 2016 Oct 7;291(41):21407-21413
pubmed: 27566548
Bioinformatics. 2006 Nov 1;22(21):2695-6
pubmed: 16940322
Cell Rep. 2020 Mar 24;30(12):3972-3980.e5
pubmed: 32209460
Nat Commun. 2021 Feb 2;12(1):731
pubmed: 33531504
Sci Rep. 2016 Aug 11;6:31353
pubmed: 27511536
Curr Opin Immunol. 2019 Feb;56:24-30
pubmed: 30292848
Biochemistry. 2016 Nov 8;55(44):6087-6099
pubmed: 27775344
Cell Rep. 2017 Aug 22;20(8):1921-1935
pubmed: 28834754
J Biol Chem. 2015 Oct 30;290(44):26352-9
pubmed: 26294762
J Struct Biol. 2005 Oct;152(1):36-51
pubmed: 16182563
Cell Cycle. 2018;17(9):1102-1114
pubmed: 30039733
Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32
pubmed: 15572765
Cell Host Microbe. 2012 Feb 16;11(2):205-17
pubmed: 22305291
Acta Crystallogr D Struct Biol. 2019 Oct 1;75(Pt 10):861-877
pubmed: 31588918
EMBO J. 2017 Mar 1;36(5):604-616
pubmed: 28122869
Elife. 2018 Nov 09;7:
pubmed: 30412051
J Biol Chem. 2015 May 22;290(21):13279-92
pubmed: 25847232
Viruses. 2020 Jul 31;12(8):
pubmed: 32751972
Nat Commun. 2020 Jun 23;11(1):3165
pubmed: 32576829
Nat Struct Mol Biol. 2013 Nov;20(11):1304-9
pubmed: 24141705
Mol Cell Biochem. 1994 Nov 9;140(1):1-22
pubmed: 7877593
Nat Methods. 2017 Apr;14(4):331-332
pubmed: 28250466
Methods Enzymol. 2001;329:14-31
pubmed: 11210530
Sci Rep. 2019 Feb 25;9(1):2650
pubmed: 30804351
Proc Natl Acad Sci U S A. 2018 Apr 17;115(16):E3798-E3807
pubmed: 29610295
Biochemistry. 2016 Oct 4;55(39):5635-5646
pubmed: 27588835
Proc Natl Acad Sci U S A. 2018 Oct 23;115(43):E10022-E10031
pubmed: 30305425
Trends Genet. 2017 Dec;33(12):895-897
pubmed: 28969870
Biochem Soc Trans. 2019 Aug 30;47(4):1013-1027
pubmed: 31296733