Melon shoot organization 1, encoding an AGRONAUTE7 protein, plays a crucial role in plant development.
Journal
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik
ISSN: 1432-2242
Titre abrégé: Theor Appl Genet
Pays: Germany
ID NLM: 0145600
Informations de publication
Date de publication:
Aug 2022
Aug 2022
Historique:
received:
27
01
2022
accepted:
16
06
2022
pubmed:
9
7
2022
medline:
29
7
2022
entrez:
8
7
2022
Statut:
ppublish
Résumé
A melon gene MSO1 located on chromosome 10 by map-based cloning strategy, which encodes an ARGONAUTE 7 protein, is responsible for the development of shoot organization. Plant endogenous small RNAs (sRNAs) are involved in various plant developmental processes. In Arabidopsis, sRNAs combined with ARGONAUTE (AGO) proteins are incorporated into the RNA-induced silencing complex (RISC), which functions in RNA silencing or biogenesis of trans-acting siRNAs (ta-siRNAs). However, their roles in melon (Cucumis melo L.) are still unclear. Here, the melon shoot organization 1 (mso1) mutant was identified and shown to exhibit pleiotropic phenotypes in leaf morphology and plant architecture. Positional cloning of MSO1 revealed that it encodes a homologue of Arabidopsis AGO7/ZIPPY, which is required for the production of ta-siRNAs. The AG-to-C mutation in the second exon of MSO1 caused a frameshift mutation and significantly reduced its expression. Ectopic expression of MSO1 rescued the Arabidopsis ago7 phenotype. RNA-seq analysis showed that several genes involved in transcriptional regulation and plant hormones were significantly altered in mso1 compared to WT. A total of 304 and 231 miRNAs were identified in mso1 and WT by sRNA sequencing, respectively, and among them, 42 known and ten novel miRNAs were differentially expressed. cme-miR390a significantly accumulated, and the expression levels of the two ta-siRNAs were almost completely abolished in mso1. Correspondingly, their targets, the ARF3 and ARF4 genes, showed dramatically upregulated expression, indicating that the miR390-TAS3-ARF pathway has conserved roles in melon. These findings will help us better understand the molecular mechanisms of MSO1 in plant development in melon.
Identifiants
pubmed: 35802144
doi: 10.1007/s00122-022-04156-2
pii: 10.1007/s00122-022-04156-2
doi:
Substances chimiques
ARF4 protein, Arabidopsis
0
Arabidopsis Proteins
0
MicroRNAs
0
RNA, Plant
0
RNA, Small Interfering
0
Transcription Factors
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2875-2890Subventions
Organisme : Innovation and Development Program of Beijing Vegetable Research Center
ID : KYCX202001-11
Organisme : National Natural Science Foundation of China
ID : U21A20229
Organisme : National Natural Science Foundation of China
ID : 31701937
Organisme : Construction Program of Science and Technology Innovation Capacity of Beijing Academy of Agriculture and Forestry Sciences
ID : KJCX20200113
Organisme : Huaibei major science and technology projects
ID : Z2020011
Organisme : Anhui Key Research and Development Project
ID : 202104a06020024
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Abe M, Yoshikawa T, Nosaka M, Sakakibara H, Sato Y, Nagato Y, Itoh J (2010) WAVY LEAF1, an ortholog of Arabidopsis HEN1, regulates shoot development by maintaining MicroRNA and trans-acting small interfering RNA accumulation in rice. Plant Physiol 154:1335–1346
pubmed: 20805329
pmcid: 2971610
doi: 10.1104/pp.110.160234
Adenot X, Elmayan T, Lauressergues D, Boutet S, Bouché N, Gasciolli V, Vaucheret H (2006) DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through AGO7. Curr Biol 16:927–932
pubmed: 16682354
doi: 10.1016/j.cub.2006.03.035
Ali S, Khan N, Xie L (2020) Molecular and hormonal regulation of leaf morphogenesis in Arabidopsis. Int J Mol Sci 21:5132
pmcid: 7404056
doi: 10.3390/ijms21145132
Allen E, Xie Z, Gustafson AM, Carrington JC (2005) MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221
pubmed: 15851028
doi: 10.1016/j.cell.2005.04.004
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM (2000) Gene ontology: tool for the unification of biology. Gene Ontol Consort Nat Genet 25:25–29
doi: 10.1038/75556
Axtell MJ, Jan C, Rajagopalan R, Bartel DP (2006) A two-hit trigger for siRNA biogenesis in plants. Cell 127:565–677
pubmed: 17081978
doi: 10.1016/j.cell.2006.09.032
Bai S, Tian Y, Tan C, Bai S, Hao J, Hasi A (2020) Genome-wide identification of microRNAs involved in the regulation of fruit ripening and climacteric stages in melon (Cucumis melo). Hortic Res 7:106
pubmed: 32637134
pmcid: 7327070
doi: 10.1038/s41438-020-0331-3
Baumberger N, Baulcombe DC (2005) Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci USA 102:11928–11933
pubmed: 16081530
pmcid: 1182554
doi: 10.1073/pnas.0505461102
Candela H, Johnston R, Gerhold A, Foster T, Hake S (2008) The milkweed pod1 gene encodes a KANADI protein that is required for abaxial/adaxial patterning in maize leaves. Plant Cell 20:2073–2087
pubmed: 18757553
pmcid: 2553616
doi: 10.1105/tpc.108.059709
Chen X (2005) MicroRNA biogenesis and function in plants. FEBS Lett 579:5923–5931
pubmed: 16144699
pmcid: 5127707
doi: 10.1016/j.febslet.2005.07.071
Clark SE, Williams RW, Meyerowitz EM (1997) The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell 89:575–585
pubmed: 9160749
doi: 10.1016/S0092-8674(00)80239-1
Clough SJ, Bent AF (1998) Floral dip: a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743
pubmed: 10069079
doi: 10.1046/j.1365-313x.1998.00343.x
Deng P, Muhammad S, Cao M, Wu L (2018) Biogenesis and regulatory hierarchy of phased small interfering RNAs in plants. Plant Biotechnol J 16:965–975
pubmed: 29327403
pmcid: 5902766
doi: 10.1111/pbi.12882
Douglas RN, Wiley D, Sarkar A, Springefr N, Timmermans MC, Scanlon MJ (2010) Ragged seedling2 encodes an ARGONAUTE7-like protein required for mediolateral expansion, but not dorsiventrality, of maize leaves. Plant Cell 22:1441–1451
pubmed: 20453116
pmcid: 2899878
doi: 10.1105/tpc.109.071613
Du F, Guan C, Jiao Y (2018) Molecular mechanisms of leaf morphogenesis. Mol Plant 11:1117–1134
pubmed: 29960106
doi: 10.1016/j.molp.2018.06.006
Fahlgren N, Montgomery TA, Howell MD, Allen E, Dvorak SK, Alexander AL, Carrington JC (2006) Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis. Curr Biol 16:939–944
pubmed: 16682356
doi: 10.1016/j.cub.2006.03.065
Filipowicz W, Jaskiewicz L, Kolb FA, Pillai RS (2005) Post-transcriptional gene silencing by siRNAs and miRNAs. Curr Opin Struct Biol 15:331–341
pubmed: 15925505
doi: 10.1016/j.sbi.2005.05.006
Friml J, Yang X, Michniewicz M, Weijers D, Quint A, Tietz O, Benjamins R, Ouwerkerk PB, Ljung K, Sandberg G, Hooykaas PJ, Palme K, Offringa R (2004) A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science 306:862–865
pubmed: 15514156
doi: 10.1126/science.1100618
Hunter C, Sun H, Poethig RS (2003) The Arabidopsis heterochronic gene ZIPPY is an ARGONAUTE family member. Curr Biol 13:1734–1739
pubmed: 14521841
doi: 10.1016/j.cub.2003.09.004
Hunter C, Willmann MR, Wu G, Yoshikawa M, de la Luz G-N, Poethig SR (2006) Trans-acting siRNA-mediated repression of ETTIN and ARF4 regulates heteroblasty in Arabidopsis. Development 133:2973–2981
pubmed: 16818444
doi: 10.1242/dev.02491
Husbands AY, Chitwood DH, Plavskin Y, Timmermans MC (2009) Signals and prepatterns: new insights into organ polarity in plants. Genes Dev 23:1986–1997
pubmed: 19723761
pmcid: 2751976
doi: 10.1101/gad.1819909
Hutvagner G, Simard MJ (2008) Argonaute proteins: key players in RNA silencing. Nature Reviews Mol Cell Biol 9:22–32
doi: 10.1038/nrm2321
Itoh JI, Kitano H, Matsuoka M, Nagato Y (2000) Shoot organization genes regulate shoot apical meristem organization and the pattern of leaf primordium initiation in rice. Plant Cell 12:2161–2174
pubmed: 11090216
pmcid: 150165
doi: 10.1105/tpc.12.11.2161
Itoh J, Sato Y, Nagato Y (2008) The SHOOT ORGANIZATION2 gene coordinates leaf domain development along the central-marginal axis in rice. Plant Cell Physiol 49:1226–1236
pubmed: 18596062
doi: 10.1093/pcp/pcn099
Ji L, Liu X, Yan J, Wang W, Yumul RE, Kim YJ, Dinh TT, Liu J, Cui X, Zheng B, Agarwal M, Liu C, Cao X, Tang G, Chen X (2011) ARGONAUTE10 and ARGONAUTE1 regulate the termination of floral stem cells through two microRNAs in Arabidopsis. PLoS Genet 7:e1001358
pubmed: 21483759
pmcid: 3069122
doi: 10.1371/journal.pgen.1001358
Jin S, Zhan J, Zhou Y (2021) Argonaute proteins: structures and their endonuclease activity. Mol Biol Rep 48:4837–4849
pubmed: 34117606
doi: 10.1007/s11033-021-06476-w
Lee ZH, Hirakawa T, Yamaguchi N, Ito T (2019) The Roles of plant hormones and their interactions with regulatory genes in determining meristem activity. Int J Mol Sci 20:4065
pmcid: 6720427
doi: 10.3390/ijms20164065
Liu S, Gao P, Zhu Q, Zhu Z, Liu H, Wang X, Weng Y, Gao M, Luan F (2020) Resequencing of 297 melon accessions reveals the genomic history of improvement and loci related to fruit traits in melon. Plant Biotechnol J 18:2545–2558
pubmed: 32559013
pmcid: 7680547
doi: 10.1111/pbi.13434
Long JA, Moan EI, Medford JI, Barton MK (1996) A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379:66–69
pubmed: 8538741
doi: 10.1038/379066a0
Luo L, Yang X, Guo M, Lan T, Yu Y, Mo B, Chen X, Gao L, Liu L (2022) TRANS-ACTING SIRNA3-derived short interfering RNAs confer cleavage of mRNAs in rice. Plant Physiol 188:347–362
doi: 10.1093/plphys/kiab452
Ma J, Lei C, Xu X, Hao K, Wang J, Cheng Z, Ma X, Ma J, Zhou K, Zhang X, Guo X, Wu F, Lin Q, Wang C, Zhai H, Wang H, Wan J (2015) Pi64, encoding a novel CC-NBS-LRR protein, confers resistance to leaf and neck blast in rice. Mol Plant Microbe Interact 28:558–568
pubmed: 25650828
doi: 10.1094/MPMI-11-14-0367-R
Ma J, Li C, Zong M, Qiu Y, Liu Y, Huang Y, Xie Y, Zhang H, Wang J (2022) CmFSI8/CmOFP13 gene encoding an OVATE family protein controls fruit shape in melon. J Exp Bot 73:1370–1384
doi: 10.1093/jxb/erab510
Mao X, Cai T, Olyarchuk JG, Wei L (2005) Automated genome annotation and pathway identification using the KEGG orthology (KO) as a controlled vocabulary. Bioinform 21:3787–3793
doi: 10.1093/bioinformatics/bti430
Matsui A, Mizunashi K, Tanaka M, Kaminuma E, Nguyen AH, Nakajima M, Kim JM, Nguyen DV, Toyoda T, Seki M (2014) tasiRNA-ARF pathway moderates floral architecture in Arabidopsis plants subjected to drought stress. Biomed Res Int 2014:303451
pubmed: 25243128
pmcid: 4160631
doi: 10.1155/2014/303451
Mayer KF, Schoof H, Haecker A, Lenhard M, Jürgens G, Laux T (1998) Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95:805–815
pubmed: 9865698
doi: 10.1016/S0092-8674(00)81703-1
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303
pubmed: 20644199
pmcid: 2928508
doi: 10.1101/gr.107524.110
Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832
pubmed: 1682921
pmcid: 52814
doi: 10.1073/pnas.88.21.9828
Montgomery TA, Howell MD, Cuperus JT, Li D, Hansen JE, Alexander AL, Chapman EJ, Fahlgren N, Allen E, Carrington JC (2008) Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133:128–141
pubmed: 18342362
doi: 10.1016/j.cell.2008.02.033
Nagasaki H, Itoh J, Hayashi K, Hibara K, Satoh-Nagasawa N, Nosaka M, Mukouhata M, Ashikari M, Kitano H, Matsuoka M, Nagato Y, Sato Y (2007) The small interfering RNA production pathway is required for shoot meristem initiation in rice. Proc Natl Acad Sci USA 104:14867–14871
pubmed: 17804793
pmcid: 1976227
doi: 10.1073/pnas.0704339104
Nogueira FT, Madi S, Chitwood DH, Juarez MT, Timmermans MC (2007) Two small regulatory RNAs establish opposing fates of a developmental axis. Genes Dev 21:750–755
pubmed: 17403777
pmcid: 1838527
doi: 10.1101/gad.1528607
Olmedo-Monfil V, Durán-Figueroa N, Arteaga-Vázquez M, Demesa-Arévalo E, Autran D, Grimanelli D, Slotkin RK, Martienssen RA, Vielle-Calzada JP (2010) Control of female gamete formation by a small RNA pathway in Arabidopsis. Nature 464:628–632
pubmed: 20208518
pmcid: 4613780
doi: 10.1038/nature08828
Roussin-Léveillée C, Silva-Martins G, Moffett P (2020) ARGONAUTE5 represses age-dependent induction of flowering through physical and functional interaction with miR156 in Arabidopsis. Plant Cell Physiol 61:957–966
pubmed: 32105323
doi: 10.1093/pcp/pcaa022
Satoh N, Hong SK, Nishimura A, Matsuoka M, Kitano H, Nagato Y (1999) Initiation of shoot apical meristem in rice: characterization of four SHOOTLESS genes. Development 126:3629–3636
pubmed: 10409508
doi: 10.1242/dev.126.16.3629
Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C (T) method. Nat Protoc 3:1101–1108
pubmed: 18546601
doi: 10.1038/nprot.2008.73
Shi Z, Wang J, Wan X, Shen G, Wang X, Zhang J (2007) Over-expression of rice OsAGO7 gene induces upward curling of the leaf blade that enhanced erect-leaf habit. Planta 226:99–108
pubmed: 17216479
doi: 10.1007/s00425-006-0472-0
Singh RK, Pandey SP (2015) Evolution of structural and functional diversification among plant Argonautes. Plant Signal Behav 10:e1069455
pubmed: 26237574
pmcid: 4883973
doi: 10.1080/15592324.2015.1069455
Souer E, van Houwelingen A, Kloos D, Mol J, Koes R (1996) The no apical meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85:159–170
pubmed: 8612269
doi: 10.1016/S0092-8674(00)81093-4
Vaucheret H (2008) Plant ARGONAUTES. Trends Plant Sci 13:350–358
pubmed: 18508405
doi: 10.1016/j.tplants.2008.04.007
Vollbrecht E, Veit B, Sinha N, Hake S (1991) The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature 350:241–243
pubmed: 1672445
doi: 10.1038/350241a0
Wang Y, Li J (2008) Molecular basis of plant architecture. Annu Rev Plant Biol 59:253–279
pubmed: 18444901
doi: 10.1146/annurev.arplant.59.032607.092902
Wang L, Feng Z, Wang X, Wang X, Zhang X (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–138
pubmed: 19855105
doi: 10.1093/bioinformatics/btp612
Wang B, Smith SM, Li J (2018) Genetic Regulation of shoot architecture. Annu Rev Plant Biol 69:437–468
pubmed: 29553800
doi: 10.1146/annurev-arplant-042817-040422
Williams L, Carles CC, Osmont KS, Fletcher JC (2005) A database analysis method identifies an endogenous trans-acting short-interfering RNA that targets the Arabidopsis ARF2, ARF3, and ARF4 genes. Proc Natl Acad Sci USA 102:9703–9708
pubmed: 15980147
pmcid: 1172271
doi: 10.1073/pnas.0504029102
Wu J, Yang J, Cho WC, Zheng Y (2020) Argonaute proteins: structural features, functions and emerging roles. J Adv Res 24:317–324
pubmed: 32455006
pmcid: 7235612
doi: 10.1016/j.jare.2020.04.017
Xia R, Xu J, Meyers BC (2017) The emergence, evolution, and diversification of the miR390-TAS3-ARF Pathway in land plants. Plant Cell 29:1232–1247
pubmed: 28442597
pmcid: 5502456
doi: 10.1105/tpc.17.00185
Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD, Zilberman D, Jacobsen SE, Carrington JC (2004) Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2:E104
pubmed: 15024409
pmcid: 350667
doi: 10.1371/journal.pbio.0020104
Xie Z, Allen E, Wilken A, Carrington JC (2005) DICER-LIKE 4 functions in trans-acting small interfering RNA biogenesis and vegetative phase change in Arabidopsis thaliana. Proc Natl Acad Sci USA 102:12984–12989
pubmed: 16129836
pmcid: 1200315
doi: 10.1073/pnas.0506426102
Xu L, Yang L, Huang H (2007) Transcriptional, post-transcriptional and post-translational regulations of gene expression during leaf polarity formation. Cell Res 17:512–519
pubmed: 17549070
doi: 10.1038/cr.2007.45
Xu M, Hu T, Zhao J, Park MY, Earley KW, Wu G, Yang L, Poethig RS (2016) Developmental functions of miR156-regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes in Arabidopsis thaliana. PLoS Genet 12:e1006263
pubmed: 27541584
pmcid: 4991793
doi: 10.1371/journal.pgen.1006263
Xue Z, Liu L, Zhang C (2020) Regulation of shoot apical meristem and axillary meristem development in plants. Int J Mol Sci 21:2917
pmcid: 7216077
doi: 10.3390/ijms21082917
Yan J, Cai X, Luo J, Sato S, Jiang Q, Yang J, Cao X, Hu X, Tabata S, Gresshoff PM, Luo D (2010) The REDUCED LEAFLET genes encode key components of the trans-acting small interfering RNA pathway and regulate compound leaf and flower development in lotus japonicus. Plant Physiol 152:797–807
pubmed: 19955265
pmcid: 2815879
doi: 10.1104/pp.109.140947
Yano R, Nonaka S, Ezura H (2018) Melonet-DB, a grand RNA-seq gene expression atlas in melon (Cucumis melo L.). Plant Cell Physiol 59:e4
pubmed: 29216378
doi: 10.1093/pcp/pcx193
Yifhar T, Pekker I, Peled D, Friedlander G, Pistunov A, Sabban M, Wachsman G, Alvarez JP, Amsellem Z, Eshed Y (2012) Failure of the tomato trans-acting short interfering RNA program to regulate AUXIN RESPONSE FACTOR3 and ARF4 underlies the wiry leaf syndrome. Plant Cell 24:3575–3589
pubmed: 23001036
pmcid: 3480288
doi: 10.1105/tpc.112.100222
Yoshikawa M, Peragine A, Park MY, Poethig RS (2005) A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev 19:2164–2175
pubmed: 16131612
pmcid: 1221887
doi: 10.1101/gad.1352605
Yuan Z, Luo D, Li G, Yao X, Wang H, Zeng M, Huang H, Cui X (2010) Characterization of the AE7 gene in Arabidopsis suggests that normal cell proliferation is essential for leaf polarity establishment. Plant J 64:331–342
pubmed: 21070412
doi: 10.1111/j.1365-313X.2010.04326.x
Zhang X, Yuan YR, Pei Y, Lin SS, Tuschl T, Patel DJ, Chua NH (2006) Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis argonaute1 cleavage activity to counter plant defense. Genes Dev 20:3255–3268
pubmed: 17158744
pmcid: 1686603
doi: 10.1101/gad.1495506
Zhang X, Zhao H, Gao S, Wang WC, Katiyar-Agarwal S, Huang HD, Raikhel N, Jin H (2011) Arabidopsis argonaute 2 regulates innate immunity via miRNA393(∗)-mediated silencing of a Golgi-localized SNARE gene, MEMB12. Mol Cell 42:356–366
pubmed: 21549312
pmcid: 3101262
doi: 10.1016/j.molcel.2011.04.010
Zhang H, Xia R, Meyers BC, Walbot V (2015) Evolution, functions, and mysteries of plant ARGONAUTE proteins. Curr Opin Plant Biol 27:84–90
pubmed: 26190741
doi: 10.1016/j.pbi.2015.06.011
Zhang Z, Runions A, Mentink RA, Kierzkowski D, Karady M, Hashemi B, Huijser P, Strauss S, Gan X, Ljung K, Tsiantis M (2020) A WOX/Auxin biosynthesis module controls growth to shape leaf form. Curr Biol 30:4857-4868.e6
pubmed: 33035489
doi: 10.1016/j.cub.2020.09.037
Zhao Z, Andersen SU, Ljung K, Dolezal K, Miotk A, Schultheiss SJ, Lohmann JU (2010) Hormonal control of the shoot stem-cell niche. Nature 465:1089–1092
pubmed: 20577215
doi: 10.1038/nature09126
Zhao G, Lian Q, Zhang Z et al (2019) A comprehensive genome variation map of melon identifies multiple domestication events and loci influencing agronomic traits. Nat Genet 51:1607–1615
pubmed: 31676864
doi: 10.1038/s41588-019-0522-8
Zheng X, Zhu J, Kapoor A, Zhu JK (2007) Role of Arabidopsis AGO6 in siRNA accumulation, DNA methylation and transcriptional gene silencing. EMBO J 26:1691–1701
pubmed: 17332757
pmcid: 1829372
doi: 10.1038/sj.emboj.7601603
Zhong J, He W, Peng Z, Zhang H, Li F, Yao J (2020) A putative AGO protein, OsAGO17, positively regulates grain size and grain weight through OsmiR397b in rice. Plant Biotechnol J 18:916–928
pubmed: 31529568
doi: 10.1111/pbi.13256
Zhou C, Han L, Fu C, Wen J, Cheng X, Nakashima J, Ma J, Tang Y, Tan Y, Tadege M, Mysore KS, Xia G, Wang ZY (2013) The trans-acting short interfering RNA3 pathway and no apical meristem antagonistically regulate leaf margin development and lateral organ separation, as revealed by analysis of an argonaute7/lobed leaflet1 mutant in Medicago truncatula. Plant Cell 25:4845–4862
pubmed: 24368797
pmcid: 3903991
doi: 10.1105/tpc.113.117788
Zhu H, Hu F, Wang R, Zhou X, Sze SH, Liou LW, Barefoot A, Dickman M, Zhang X (2011) Arabidopsis argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development. Cell 145:242–256
pubmed: 21496644
pmcid: 4124879
doi: 10.1016/j.cell.2011.03.024