Melon shoot organization 1, encoding an AGRONAUTE7 protein, plays a crucial role in plant development.


Journal

TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik
ISSN: 1432-2242
Titre abrégé: Theor Appl Genet
Pays: Germany
ID NLM: 0145600

Informations de publication

Date de publication:
Aug 2022
Historique:
received: 27 01 2022
accepted: 16 06 2022
pubmed: 9 7 2022
medline: 29 7 2022
entrez: 8 7 2022
Statut: ppublish

Résumé

A melon gene MSO1 located on chromosome 10 by map-based cloning strategy, which encodes an ARGONAUTE 7 protein, is responsible for the development of shoot organization. Plant endogenous small RNAs (sRNAs) are involved in various plant developmental processes. In Arabidopsis, sRNAs combined with ARGONAUTE (AGO) proteins are incorporated into the RNA-induced silencing complex (RISC), which functions in RNA silencing or biogenesis of trans-acting siRNAs (ta-siRNAs). However, their roles in melon (Cucumis melo L.) are still unclear. Here, the melon shoot organization 1 (mso1) mutant was identified and shown to exhibit pleiotropic phenotypes in leaf morphology and plant architecture. Positional cloning of MSO1 revealed that it encodes a homologue of Arabidopsis AGO7/ZIPPY, which is required for the production of ta-siRNAs. The AG-to-C mutation in the second exon of MSO1 caused a frameshift mutation and significantly reduced its expression. Ectopic expression of MSO1 rescued the Arabidopsis ago7 phenotype. RNA-seq analysis showed that several genes involved in transcriptional regulation and plant hormones were significantly altered in mso1 compared to WT. A total of 304 and 231 miRNAs were identified in mso1 and WT by sRNA sequencing, respectively, and among them, 42 known and ten novel miRNAs were differentially expressed. cme-miR390a significantly accumulated, and the expression levels of the two ta-siRNAs were almost completely abolished in mso1. Correspondingly, their targets, the ARF3 and ARF4 genes, showed dramatically upregulated expression, indicating that the miR390-TAS3-ARF pathway has conserved roles in melon. These findings will help us better understand the molecular mechanisms of MSO1 in plant development in melon.

Identifiants

pubmed: 35802144
doi: 10.1007/s00122-022-04156-2
pii: 10.1007/s00122-022-04156-2
doi:

Substances chimiques

ARF4 protein, Arabidopsis 0
Arabidopsis Proteins 0
MicroRNAs 0
RNA, Plant 0
RNA, Small Interfering 0
Transcription Factors 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2875-2890

Subventions

Organisme : Innovation and Development Program of Beijing Vegetable Research Center
ID : KYCX202001-11
Organisme : National Natural Science Foundation of China
ID : U21A20229
Organisme : National Natural Science Foundation of China
ID : 31701937
Organisme : Construction Program of Science and Technology Innovation Capacity of Beijing Academy of Agriculture and Forestry Sciences
ID : KJCX20200113
Organisme : Huaibei major science and technology projects
ID : Z2020011
Organisme : Anhui Key Research and Development Project
ID : 202104a06020024

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Abe M, Yoshikawa T, Nosaka M, Sakakibara H, Sato Y, Nagato Y, Itoh J (2010) WAVY LEAF1, an ortholog of Arabidopsis HEN1, regulates shoot development by maintaining MicroRNA and trans-acting small interfering RNA accumulation in rice. Plant Physiol 154:1335–1346
pubmed: 20805329 pmcid: 2971610 doi: 10.1104/pp.110.160234
Adenot X, Elmayan T, Lauressergues D, Boutet S, Bouché N, Gasciolli V, Vaucheret H (2006) DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through AGO7. Curr Biol 16:927–932
pubmed: 16682354 doi: 10.1016/j.cub.2006.03.035
Ali S, Khan N, Xie L (2020) Molecular and hormonal regulation of leaf morphogenesis in Arabidopsis. Int J Mol Sci 21:5132
pmcid: 7404056 doi: 10.3390/ijms21145132
Allen E, Xie Z, Gustafson AM, Carrington JC (2005) MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221
pubmed: 15851028 doi: 10.1016/j.cell.2005.04.004
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM (2000) Gene ontology: tool for the unification of biology. Gene Ontol Consort Nat Genet 25:25–29
doi: 10.1038/75556
Axtell MJ, Jan C, Rajagopalan R, Bartel DP (2006) A two-hit trigger for siRNA biogenesis in plants. Cell 127:565–677
pubmed: 17081978 doi: 10.1016/j.cell.2006.09.032
Bai S, Tian Y, Tan C, Bai S, Hao J, Hasi A (2020) Genome-wide identification of microRNAs involved in the regulation of fruit ripening and climacteric stages in melon (Cucumis melo). Hortic Res 7:106
pubmed: 32637134 pmcid: 7327070 doi: 10.1038/s41438-020-0331-3
Baumberger N, Baulcombe DC (2005) Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci USA 102:11928–11933
pubmed: 16081530 pmcid: 1182554 doi: 10.1073/pnas.0505461102
Candela H, Johnston R, Gerhold A, Foster T, Hake S (2008) The milkweed pod1 gene encodes a KANADI protein that is required for abaxial/adaxial patterning in maize leaves. Plant Cell 20:2073–2087
pubmed: 18757553 pmcid: 2553616 doi: 10.1105/tpc.108.059709
Chen X (2005) MicroRNA biogenesis and function in plants. FEBS Lett 579:5923–5931
pubmed: 16144699 pmcid: 5127707 doi: 10.1016/j.febslet.2005.07.071
Clark SE, Williams RW, Meyerowitz EM (1997) The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell 89:575–585
pubmed: 9160749 doi: 10.1016/S0092-8674(00)80239-1
Clough SJ, Bent AF (1998) Floral dip: a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743
pubmed: 10069079 doi: 10.1046/j.1365-313x.1998.00343.x
Deng P, Muhammad S, Cao M, Wu L (2018) Biogenesis and regulatory hierarchy of phased small interfering RNAs in plants. Plant Biotechnol J 16:965–975
pubmed: 29327403 pmcid: 5902766 doi: 10.1111/pbi.12882
Douglas RN, Wiley D, Sarkar A, Springefr N, Timmermans MC, Scanlon MJ (2010) Ragged seedling2 encodes an ARGONAUTE7-like protein required for mediolateral expansion, but not dorsiventrality, of maize leaves. Plant Cell 22:1441–1451
pubmed: 20453116 pmcid: 2899878 doi: 10.1105/tpc.109.071613
Du F, Guan C, Jiao Y (2018) Molecular mechanisms of leaf morphogenesis. Mol Plant 11:1117–1134
pubmed: 29960106 doi: 10.1016/j.molp.2018.06.006
Fahlgren N, Montgomery TA, Howell MD, Allen E, Dvorak SK, Alexander AL, Carrington JC (2006) Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis. Curr Biol 16:939–944
pubmed: 16682356 doi: 10.1016/j.cub.2006.03.065
Filipowicz W, Jaskiewicz L, Kolb FA, Pillai RS (2005) Post-transcriptional gene silencing by siRNAs and miRNAs. Curr Opin Struct Biol 15:331–341
pubmed: 15925505 doi: 10.1016/j.sbi.2005.05.006
Friml J, Yang X, Michniewicz M, Weijers D, Quint A, Tietz O, Benjamins R, Ouwerkerk PB, Ljung K, Sandberg G, Hooykaas PJ, Palme K, Offringa R (2004) A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science 306:862–865
pubmed: 15514156 doi: 10.1126/science.1100618
Hunter C, Sun H, Poethig RS (2003) The Arabidopsis heterochronic gene ZIPPY is an ARGONAUTE family member. Curr Biol 13:1734–1739
pubmed: 14521841 doi: 10.1016/j.cub.2003.09.004
Hunter C, Willmann MR, Wu G, Yoshikawa M, de la Luz G-N, Poethig SR (2006) Trans-acting siRNA-mediated repression of ETTIN and ARF4 regulates heteroblasty in Arabidopsis. Development 133:2973–2981
pubmed: 16818444 doi: 10.1242/dev.02491
Husbands AY, Chitwood DH, Plavskin Y, Timmermans MC (2009) Signals and prepatterns: new insights into organ polarity in plants. Genes Dev 23:1986–1997
pubmed: 19723761 pmcid: 2751976 doi: 10.1101/gad.1819909
Hutvagner G, Simard MJ (2008) Argonaute proteins: key players in RNA silencing. Nature Reviews Mol Cell Biol 9:22–32
doi: 10.1038/nrm2321
Itoh JI, Kitano H, Matsuoka M, Nagato Y (2000) Shoot organization genes regulate shoot apical meristem organization and the pattern of leaf primordium initiation in rice. Plant Cell 12:2161–2174
pubmed: 11090216 pmcid: 150165 doi: 10.1105/tpc.12.11.2161
Itoh J, Sato Y, Nagato Y (2008) The SHOOT ORGANIZATION2 gene coordinates leaf domain development along the central-marginal axis in rice. Plant Cell Physiol 49:1226–1236
pubmed: 18596062 doi: 10.1093/pcp/pcn099
Ji L, Liu X, Yan J, Wang W, Yumul RE, Kim YJ, Dinh TT, Liu J, Cui X, Zheng B, Agarwal M, Liu C, Cao X, Tang G, Chen X (2011) ARGONAUTE10 and ARGONAUTE1 regulate the termination of floral stem cells through two microRNAs in Arabidopsis. PLoS Genet 7:e1001358
pubmed: 21483759 pmcid: 3069122 doi: 10.1371/journal.pgen.1001358
Jin S, Zhan J, Zhou Y (2021) Argonaute proteins: structures and their endonuclease activity. Mol Biol Rep 48:4837–4849
pubmed: 34117606 doi: 10.1007/s11033-021-06476-w
Lee ZH, Hirakawa T, Yamaguchi N, Ito T (2019) The Roles of plant hormones and their interactions with regulatory genes in determining meristem activity. Int J Mol Sci 20:4065
pmcid: 6720427 doi: 10.3390/ijms20164065
Liu S, Gao P, Zhu Q, Zhu Z, Liu H, Wang X, Weng Y, Gao M, Luan F (2020) Resequencing of 297 melon accessions reveals the genomic history of improvement and loci related to fruit traits in melon. Plant Biotechnol J 18:2545–2558
pubmed: 32559013 pmcid: 7680547 doi: 10.1111/pbi.13434
Long JA, Moan EI, Medford JI, Barton MK (1996) A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379:66–69
pubmed: 8538741 doi: 10.1038/379066a0
Luo L, Yang X, Guo M, Lan T, Yu Y, Mo B, Chen X, Gao L, Liu L (2022) TRANS-ACTING SIRNA3-derived short interfering RNAs confer cleavage of mRNAs in rice. Plant Physiol 188:347–362
doi: 10.1093/plphys/kiab452
Ma J, Lei C, Xu X, Hao K, Wang J, Cheng Z, Ma X, Ma J, Zhou K, Zhang X, Guo X, Wu F, Lin Q, Wang C, Zhai H, Wang H, Wan J (2015) Pi64, encoding a novel CC-NBS-LRR protein, confers resistance to leaf and neck blast in rice. Mol Plant Microbe Interact 28:558–568
pubmed: 25650828 doi: 10.1094/MPMI-11-14-0367-R
Ma J, Li C, Zong M, Qiu Y, Liu Y, Huang Y, Xie Y, Zhang H, Wang J (2022) CmFSI8/CmOFP13 gene encoding an OVATE family protein controls fruit shape in melon. J Exp Bot 73:1370–1384
doi: 10.1093/jxb/erab510
Mao X, Cai T, Olyarchuk JG, Wei L (2005) Automated genome annotation and pathway identification using the KEGG orthology (KO) as a controlled vocabulary. Bioinform 21:3787–3793
doi: 10.1093/bioinformatics/bti430
Matsui A, Mizunashi K, Tanaka M, Kaminuma E, Nguyen AH, Nakajima M, Kim JM, Nguyen DV, Toyoda T, Seki M (2014) tasiRNA-ARF pathway moderates floral architecture in Arabidopsis plants subjected to drought stress. Biomed Res Int 2014:303451
pubmed: 25243128 pmcid: 4160631 doi: 10.1155/2014/303451
Mayer KF, Schoof H, Haecker A, Lenhard M, Jürgens G, Laux T (1998) Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95:805–815
pubmed: 9865698 doi: 10.1016/S0092-8674(00)81703-1
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303
pubmed: 20644199 pmcid: 2928508 doi: 10.1101/gr.107524.110
Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832
pubmed: 1682921 pmcid: 52814 doi: 10.1073/pnas.88.21.9828
Montgomery TA, Howell MD, Cuperus JT, Li D, Hansen JE, Alexander AL, Chapman EJ, Fahlgren N, Allen E, Carrington JC (2008) Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133:128–141
pubmed: 18342362 doi: 10.1016/j.cell.2008.02.033
Nagasaki H, Itoh J, Hayashi K, Hibara K, Satoh-Nagasawa N, Nosaka M, Mukouhata M, Ashikari M, Kitano H, Matsuoka M, Nagato Y, Sato Y (2007) The small interfering RNA production pathway is required for shoot meristem initiation in rice. Proc Natl Acad Sci USA 104:14867–14871
pubmed: 17804793 pmcid: 1976227 doi: 10.1073/pnas.0704339104
Nogueira FT, Madi S, Chitwood DH, Juarez MT, Timmermans MC (2007) Two small regulatory RNAs establish opposing fates of a developmental axis. Genes Dev 21:750–755
pubmed: 17403777 pmcid: 1838527 doi: 10.1101/gad.1528607
Olmedo-Monfil V, Durán-Figueroa N, Arteaga-Vázquez M, Demesa-Arévalo E, Autran D, Grimanelli D, Slotkin RK, Martienssen RA, Vielle-Calzada JP (2010) Control of female gamete formation by a small RNA pathway in Arabidopsis. Nature 464:628–632
pubmed: 20208518 pmcid: 4613780 doi: 10.1038/nature08828
Roussin-Léveillée C, Silva-Martins G, Moffett P (2020) ARGONAUTE5 represses age-dependent induction of flowering through physical and functional interaction with miR156 in Arabidopsis. Plant Cell Physiol 61:957–966
pubmed: 32105323 doi: 10.1093/pcp/pcaa022
Satoh N, Hong SK, Nishimura A, Matsuoka M, Kitano H, Nagato Y (1999) Initiation of shoot apical meristem in rice: characterization of four SHOOTLESS genes. Development 126:3629–3636
pubmed: 10409508 doi: 10.1242/dev.126.16.3629
Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C (T) method. Nat Protoc 3:1101–1108
pubmed: 18546601 doi: 10.1038/nprot.2008.73
Shi Z, Wang J, Wan X, Shen G, Wang X, Zhang J (2007) Over-expression of rice OsAGO7 gene induces upward curling of the leaf blade that enhanced erect-leaf habit. Planta 226:99–108
pubmed: 17216479 doi: 10.1007/s00425-006-0472-0
Singh RK, Pandey SP (2015) Evolution of structural and functional diversification among plant Argonautes. Plant Signal Behav 10:e1069455
pubmed: 26237574 pmcid: 4883973 doi: 10.1080/15592324.2015.1069455
Souer E, van Houwelingen A, Kloos D, Mol J, Koes R (1996) The no apical meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85:159–170
pubmed: 8612269 doi: 10.1016/S0092-8674(00)81093-4
Vaucheret H (2008) Plant ARGONAUTES. Trends Plant Sci 13:350–358
pubmed: 18508405 doi: 10.1016/j.tplants.2008.04.007
Vollbrecht E, Veit B, Sinha N, Hake S (1991) The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature 350:241–243
pubmed: 1672445 doi: 10.1038/350241a0
Wang Y, Li J (2008) Molecular basis of plant architecture. Annu Rev Plant Biol 59:253–279
pubmed: 18444901 doi: 10.1146/annurev.arplant.59.032607.092902
Wang L, Feng Z, Wang X, Wang X, Zhang X (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–138
pubmed: 19855105 doi: 10.1093/bioinformatics/btp612
Wang B, Smith SM, Li J (2018) Genetic Regulation of shoot architecture. Annu Rev Plant Biol 69:437–468
pubmed: 29553800 doi: 10.1146/annurev-arplant-042817-040422
Williams L, Carles CC, Osmont KS, Fletcher JC (2005) A database analysis method identifies an endogenous trans-acting short-interfering RNA that targets the Arabidopsis ARF2, ARF3, and ARF4 genes. Proc Natl Acad Sci USA 102:9703–9708
pubmed: 15980147 pmcid: 1172271 doi: 10.1073/pnas.0504029102
Wu J, Yang J, Cho WC, Zheng Y (2020) Argonaute proteins: structural features, functions and emerging roles. J Adv Res 24:317–324
pubmed: 32455006 pmcid: 7235612 doi: 10.1016/j.jare.2020.04.017
Xia R, Xu J, Meyers BC (2017) The emergence, evolution, and diversification of the miR390-TAS3-ARF Pathway in land plants. Plant Cell 29:1232–1247
pubmed: 28442597 pmcid: 5502456 doi: 10.1105/tpc.17.00185
Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD, Zilberman D, Jacobsen SE, Carrington JC (2004) Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2:E104
pubmed: 15024409 pmcid: 350667 doi: 10.1371/journal.pbio.0020104
Xie Z, Allen E, Wilken A, Carrington JC (2005) DICER-LIKE 4 functions in trans-acting small interfering RNA biogenesis and vegetative phase change in Arabidopsis thaliana. Proc Natl Acad Sci USA 102:12984–12989
pubmed: 16129836 pmcid: 1200315 doi: 10.1073/pnas.0506426102
Xu L, Yang L, Huang H (2007) Transcriptional, post-transcriptional and post-translational regulations of gene expression during leaf polarity formation. Cell Res 17:512–519
pubmed: 17549070 doi: 10.1038/cr.2007.45
Xu M, Hu T, Zhao J, Park MY, Earley KW, Wu G, Yang L, Poethig RS (2016) Developmental functions of miR156-regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes in Arabidopsis thaliana. PLoS Genet 12:e1006263
pubmed: 27541584 pmcid: 4991793 doi: 10.1371/journal.pgen.1006263
Xue Z, Liu L, Zhang C (2020) Regulation of shoot apical meristem and axillary meristem development in plants. Int J Mol Sci 21:2917
pmcid: 7216077 doi: 10.3390/ijms21082917
Yan J, Cai X, Luo J, Sato S, Jiang Q, Yang J, Cao X, Hu X, Tabata S, Gresshoff PM, Luo D (2010) The REDUCED LEAFLET genes encode key components of the trans-acting small interfering RNA pathway and regulate compound leaf and flower development in lotus japonicus. Plant Physiol 152:797–807
pubmed: 19955265 pmcid: 2815879 doi: 10.1104/pp.109.140947
Yano R, Nonaka S, Ezura H (2018) Melonet-DB, a grand RNA-seq gene expression atlas in melon (Cucumis melo L.). Plant Cell Physiol 59:e4
pubmed: 29216378 doi: 10.1093/pcp/pcx193
Yifhar T, Pekker I, Peled D, Friedlander G, Pistunov A, Sabban M, Wachsman G, Alvarez JP, Amsellem Z, Eshed Y (2012) Failure of the tomato trans-acting short interfering RNA program to regulate AUXIN RESPONSE FACTOR3 and ARF4 underlies the wiry leaf syndrome. Plant Cell 24:3575–3589
pubmed: 23001036 pmcid: 3480288 doi: 10.1105/tpc.112.100222
Yoshikawa M, Peragine A, Park MY, Poethig RS (2005) A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev 19:2164–2175
pubmed: 16131612 pmcid: 1221887 doi: 10.1101/gad.1352605
Yuan Z, Luo D, Li G, Yao X, Wang H, Zeng M, Huang H, Cui X (2010) Characterization of the AE7 gene in Arabidopsis suggests that normal cell proliferation is essential for leaf polarity establishment. Plant J 64:331–342
pubmed: 21070412 doi: 10.1111/j.1365-313X.2010.04326.x
Zhang X, Yuan YR, Pei Y, Lin SS, Tuschl T, Patel DJ, Chua NH (2006) Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis argonaute1 cleavage activity to counter plant defense. Genes Dev 20:3255–3268
pubmed: 17158744 pmcid: 1686603 doi: 10.1101/gad.1495506
Zhang X, Zhao H, Gao S, Wang WC, Katiyar-Agarwal S, Huang HD, Raikhel N, Jin H (2011) Arabidopsis argonaute 2 regulates innate immunity via miRNA393(∗)-mediated silencing of a Golgi-localized SNARE gene, MEMB12. Mol Cell 42:356–366
pubmed: 21549312 pmcid: 3101262 doi: 10.1016/j.molcel.2011.04.010
Zhang H, Xia R, Meyers BC, Walbot V (2015) Evolution, functions, and mysteries of plant ARGONAUTE proteins. Curr Opin Plant Biol 27:84–90
pubmed: 26190741 doi: 10.1016/j.pbi.2015.06.011
Zhang Z, Runions A, Mentink RA, Kierzkowski D, Karady M, Hashemi B, Huijser P, Strauss S, Gan X, Ljung K, Tsiantis M (2020) A WOX/Auxin biosynthesis module controls growth to shape leaf form. Curr Biol 30:4857-4868.e6
pubmed: 33035489 doi: 10.1016/j.cub.2020.09.037
Zhao Z, Andersen SU, Ljung K, Dolezal K, Miotk A, Schultheiss SJ, Lohmann JU (2010) Hormonal control of the shoot stem-cell niche. Nature 465:1089–1092
pubmed: 20577215 doi: 10.1038/nature09126
Zhao G, Lian Q, Zhang Z et al (2019) A comprehensive genome variation map of melon identifies multiple domestication events and loci influencing agronomic traits. Nat Genet 51:1607–1615
pubmed: 31676864 doi: 10.1038/s41588-019-0522-8
Zheng X, Zhu J, Kapoor A, Zhu JK (2007) Role of Arabidopsis AGO6 in siRNA accumulation, DNA methylation and transcriptional gene silencing. EMBO J 26:1691–1701
pubmed: 17332757 pmcid: 1829372 doi: 10.1038/sj.emboj.7601603
Zhong J, He W, Peng Z, Zhang H, Li F, Yao J (2020) A putative AGO protein, OsAGO17, positively regulates grain size and grain weight through OsmiR397b in rice. Plant Biotechnol J 18:916–928
pubmed: 31529568 doi: 10.1111/pbi.13256
Zhou C, Han L, Fu C, Wen J, Cheng X, Nakashima J, Ma J, Tang Y, Tan Y, Tadege M, Mysore KS, Xia G, Wang ZY (2013) The trans-acting short interfering RNA3 pathway and no apical meristem antagonistically regulate leaf margin development and lateral organ separation, as revealed by analysis of an argonaute7/lobed leaflet1 mutant in Medicago truncatula. Plant Cell 25:4845–4862
pubmed: 24368797 pmcid: 3903991 doi: 10.1105/tpc.113.117788
Zhu H, Hu F, Wang R, Zhou X, Sze SH, Liou LW, Barefoot A, Dickman M, Zhang X (2011) Arabidopsis argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development. Cell 145:242–256
pubmed: 21496644 pmcid: 4124879 doi: 10.1016/j.cell.2011.03.024

Auteurs

Jian Ma (J)

Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China. majian@nercv.org.

Congcong Li (C)

Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.

Peng Gao (P)

College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China.

Yanhong Qiu (Y)

Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.

Mei Zong (M)

Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.

Huijun Zhang (H)

School of Life Science, Huaibei Normal University, Huaibei, 235000, Anhui, China. zhhuijun@126.com.

Jianshe Wang (J)

Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.

Articles similaires

Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins
Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family
Arabidopsis Arabidopsis Proteins Osmotic Pressure Cytoplasm RNA, Messenger
Genome Size Genome, Plant Magnoliopsida Evolution, Molecular Arabidopsis

Classifications MeSH