TFEB induces mitochondrial itaconate synthesis to suppress bacterial growth in macrophages.


Journal

Nature metabolism
ISSN: 2522-5812
Titre abrégé: Nat Metab
Pays: Germany
ID NLM: 101736592

Informations de publication

Date de publication:
07 2022
Historique:
received: 23 04 2022
accepted: 13 06 2022
pubmed: 22 7 2022
medline: 28 7 2022
entrez: 21 7 2022
Statut: ppublish

Résumé

Successful elimination of bacteria in phagocytes occurs in the phago-lysosomal system, but also depends on mitochondrial pathways. Yet, how these two organelle systems communicate is largely unknown. Here we identify the lysosomal biogenesis factor transcription factor EB (TFEB) as regulator for phago-lysosome-mitochondria crosstalk in macrophages. By combining cellular imaging and metabolic profiling, we find that TFEB activation, in response to bacterial stimuli, promotes the transcription of aconitate decarboxylase (Acod1, Irg1) and synthesis of its product itaconate, a mitochondrial metabolite with antimicrobial activity. Activation of the TFEB-Irg1-itaconate signalling axis reduces the survival of the intravacuolar pathogen Salmonella enterica serovar Typhimurium. TFEB-driven itaconate is subsequently transferred via the Irg1-Rab32-BLOC3 system into the Salmonella-containing vacuole, thereby exposing the pathogen to elevated itaconate levels. By activating itaconate production, TFEB selectively restricts proliferating Salmonella, a bacterial subpopulation that normally escapes macrophage control, which contrasts TFEB's role in autophagy-mediated pathogen degradation. Together, our data define a TFEB-driven metabolic pathway between phago-lysosomes and mitochondria that restrains Salmonella Typhimurium burden in macrophages in vitro and in vivo.

Identifiants

pubmed: 35864246
doi: 10.1038/s42255-022-00605-w
pii: 10.1038/s42255-022-00605-w
pmc: PMC9314259
doi:

Substances chimiques

Succinates 0
itaconic acid Q4516562YH

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

856-866

Subventions

Organisme : NINDS NIH HHS
ID : R01 NS078072
Pays : United States

Informations de copyright

© 2022. The Author(s).

Références

Settembre, C., Fraldi, A., Medina, D. L. & Ballabio, A. Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat. Rev. Mol. Cell Biol. 14, 283–296 (2013).
pubmed: 23609508 pmcid: 4387238 doi: 10.1038/nrm3565
Ballabio, A. & Bonifacino, J. S. Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat. Rev. Mol. Cell Biol. 21, 101–118 (2020).
pubmed: 31768005 doi: 10.1038/s41580-019-0185-4
Weiss, G. & Schaible, U. E. Macrophage defense mechanisms against intracellular bacteria. Immunol. Rev. 264, 182–203 (2015).
pubmed: 25703560 pmcid: 4368383 doi: 10.1111/imr.12266
Sanjuan, M. A., Milasta, S. & Green, D. R. Toll-like receptor signaling in the lysosomal pathways. Immunol. Rev. 227, 203–220 (2009).
pubmed: 19120486 doi: 10.1111/j.1600-065X.2008.00732.x
Gray, M. A. et al. Phagocytosis enhances lysosomal and bactericidal properties by activating the transcription factor TFEB. Curr. Biol. 26, 1955–1964 (2016).
pubmed: 27397893 pmcid: 5453720 doi: 10.1016/j.cub.2016.05.070
Hipolito, V. E. B., Ospina-Escobar, E. & Botelho, R. J. Lysosome remodelling and adaptation during phagocyte activation. Cell Microbiol. https://doi.org/10.1111/cmi.12824 (2018).
Tiku, V., Tan, M. W. & Dikic, I. Mitochondrial functions in infection and immunity. Trends Cell Biol. 30, 263–275 (2020).
pubmed: 32200805 pmcid: 7126537 doi: 10.1016/j.tcb.2020.01.006
Ryan, D. G. & O’Neill, L. A. J. Krebs cycle reborn in macrophage immunometabolism. Annu Rev. Immunol. 38, 289–313 (2020).
pubmed: 31986069 doi: 10.1146/annurev-immunol-081619-104850
Chen, M. et al. Itaconate is an effector of a Rab GTPase cell-autonomous host defense pathway against Salmonella. Science 369, 450–455 (2020).
pubmed: 32703879 pmcid: 8020367 doi: 10.1126/science.aaz1333
Riquelme, S. A. et al. Pseudomonas aeruginosa utilizes host-derived itaconate to redirect its metabolism to promote biofilm formation. Cell Metab. 31, 1091–1106 e1096 (2020).
pubmed: 32428444 pmcid: 7272298 doi: 10.1016/j.cmet.2020.04.017
Rosenberg, G. et al. Host succinate is an activation signal for Salmonella virulence during intracellular infection. Science 371, 400–405 (2021).
pubmed: 33479153 doi: 10.1126/science.aba8026
Elbaz-Alon, Y. et al. A dynamic interface between vacuoles and mitochondria in yeast. Dev. Cell 30, 95–102 (2014).
pubmed: 25026036 doi: 10.1016/j.devcel.2014.06.007
Honscher, C. et al. Cellular metabolism regulates contact sites between vacuoles and mitochondria. Dev. Cell 30, 86–94 (2014).
pubmed: 25026035 doi: 10.1016/j.devcel.2014.06.006
Abuaita, B. H., Schultz, T. L. & O’Riordan, M. X. Mitochondria-derived vesicles deliver antimicrobial reactive oxygen species to control phagosome-localized Staphylococcus aureus. Cell Host Microbe 24, 625–636 e625 (2018).
pubmed: 30449314 pmcid: 7323595 doi: 10.1016/j.chom.2018.10.005
Baixauli, F. et al. Mitochondrial respiration controls lysosomal function during inflammatory T cell responses. Cell Metab. 22, 485–498 (2015).
pubmed: 26299452 pmcid: 5026297 doi: 10.1016/j.cmet.2015.07.020
West, A. P. et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472, 476–480 (2011).
pubmed: 21525932 pmcid: 3460538 doi: 10.1038/nature09973
Settembre, C. et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 31, 1095–1108 (2012).
pubmed: 22343943 pmcid: 3298007 doi: 10.1038/emboj.2012.32
Irazoqui, J. E. Key roles of MiT transcription factors in innate immunity and inflammation. Trends Immunol. 41, 157–171 (2020).
pubmed: 31959514 pmcid: 6995440 doi: 10.1016/j.it.2019.12.003
Sardiello, M. et al. A gene network regulating lysosomal biogenesis and function. Science 325, 473–477 (2009).
pubmed: 19556463 doi: 10.1126/science.1174447
Najibi, M., Honwad, H. H., Moreau, J. A., Becker, S. M. & Irazoqui, J. E. A novel Nox/Phox-Cd38-Naadp-Tfeb axis important for macrophage activation during bacterial phagocytosis. Autophagy 18, 124–141 (2022).
pubmed: 33818279 doi: 10.1080/15548627.2021.1911548
Chen, D. et al. Chloroquine modulates antitumor immune response by resetting tumor-associated macrophages toward M1 phenotype. Nat. Commun. 9, 873 (2018).
pubmed: 29491374 pmcid: 5830447 doi: 10.1038/s41467-018-03225-9
Jha, A. K. et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42, 419–430 (2015).
pubmed: 25786174 doi: 10.1016/j.immuni.2015.02.005
Michelucci, A. et al. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc. Natl Acad. Sci. USA 110, 7820–7825 (2013).
pubmed: 23610393 pmcid: 3651434 doi: 10.1073/pnas.1218599110
Song, W., Wang, F., Lotfi, P., Sardiello, M. & Segatori, L. 2-Hydroxypropyl-beta-cyclodextrin promotes transcription factor EB-mediated activation of autophagy: implications for therapy. J. Biol. Chem. 289, 10211–10222 (2014).
pubmed: 24558044 pmcid: 3974990 doi: 10.1074/jbc.M113.506246
Wang, C. et al. Small-molecule TFEB pathway agonists that ameliorate metabolic syndrome in mice and extend C. elegans lifespan. Nat. Commun. 8, 2270 (2017).
pubmed: 29273768 pmcid: 5741634 doi: 10.1038/s41467-017-02332-3
Palmieri, E. M. et al. Nitric oxide orchestrates metabolic rewiring in M1 macrophages by targeting aconitase 2 and pyruvate dehydrogenase. Nat. Commun. 11, 698 (2020).
pubmed: 32019928 pmcid: 7000728 doi: 10.1038/s41467-020-14433-7
Bailey, J. D. et al. Nitric oxide modulates metabolic remodeling in inflammatory macrophages through TCA cycle regulation and itaconate accumulation. Cell Rep. 28, 218–230 e217 (2019).
pubmed: 31269442 pmcid: 6616861 doi: 10.1016/j.celrep.2019.06.018
Bambouskova, M. et al. Itaconate confers tolerance to late NLRP3 inflammasome activation. Cell Rep. 34, 108756 (2021).
pubmed: 33691097 pmcid: 8039864 doi: 10.1016/j.celrep.2021.108756
Westphal, A. et al. Lysosomal trafficking regulator Lyst links membrane trafficking to toll-like receptor-mediated inflammatory responses. J. Exp. Med. 214, 227–244 (2017).
pubmed: 27881733 pmcid: 5206490 doi: 10.1084/jem.20141461
Lee, C. G., Jenkins, N. A., Gilbert, D. J., Copeland, N. G. & O’Brien, W. E. Cloning and analysis of gene regulation of a novel LPS-inducible cDNA. Immunogenetics 41, 263–270 (1995).
pubmed: 7721348 doi: 10.1007/BF00172150
Mills, E. L. et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 556, 113–117 (2018).
pubmed: 29590092 pmcid: 6047741 doi: 10.1038/nature25986
Tallam, A. et al. Gene regulatory network inference of Immunoresponsive Gene 1 (IRG1) identifies Interferon Regulatory Factor 1 (IRF1) as its transcriptional regulator in mammalian macrophages. PLoS ONE 11, e0149050 (2016).
pubmed: 26872335 pmcid: 4752512 doi: 10.1371/journal.pone.0149050
Tomlinson, K. L. et al. Staphylococcus aureus induces an itaconate-dominated immunometabolic response that drives biofilm formation. Nat. Commun. 12, 1399 (2021).
pubmed: 33658521 pmcid: 7930111 doi: 10.1038/s41467-021-21718-y
Settembre, C. et al. TFEB links autophagy to lysosomal biogenesis. Science 332, 1429–1433 (2011).
pubmed: 21617040 pmcid: 3638014 doi: 10.1126/science.1204592
Luan, H. H. & Medzhitov, R. Food fight: role of itaconate and other metabolites in antimicrobial defense. Cell Metab. 24, 379–387 (2016).
pubmed: 27626199 pmcid: 5024735 doi: 10.1016/j.cmet.2016.08.013
Rao, S., Xu, T., Xia, Y. & Zhang, H. Salmonella and S. aureus escape from the clearance of macrophages via controlling TFEB. Front. Microbiol. 11, 573844 (2020).
pubmed: 33324360 pmcid: 7726115 doi: 10.3389/fmicb.2020.573844
Ammanathan, V. et al. Restriction of intracellular Salmonella replication by restoring TFEB-mediated xenophagy. Autophagy https://doi.org/10.1080/15548627.2019.1689770 (2019).
Helaine, S. et al. Dynamics of intracellular bacterial replication at the single cell level. Proc. Natl Acad. Sci. USA 107, 3746–3751 (2010).
pubmed: 20133586 pmcid: 2840444 doi: 10.1073/pnas.1000041107
Blair, J. M., Richmond, G. E., Bailey, A. M., Ivens, A. & Piddock, L. J. Choice of bacterial growth medium alters the transcriptome and phenotype of Salmonella enterica serovar Typhimurium. PLoS ONE 8, e63912 (2013).
pubmed: 23704954 pmcid: 3660369 doi: 10.1371/journal.pone.0063912
Figueira, R., Watson, K. G., Holden, D. W. & Helaine, S. Identification of salmonella pathogenicity island-2 type III secretion system effectors involved in intramacrophage replication of S. enterica serovar Typhimurium: implications for rational vaccine design. mBio 4, e00065 (2013).
pubmed: 23592259 pmcid: 3634603 doi: 10.1128/mBio.00065-13
Settembre, C. et al. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat. Cell Biol. 15, 647–658 (2013).
pubmed: 23604321 pmcid: 3699877 doi: 10.1038/ncb2718
Mansueto, G. et al. Transcription factor EB controls metabolic flexibility during exercise. Cell Metab. 25, 182–196 (2017).
pubmed: 28011087 pmcid: 5241227 doi: 10.1016/j.cmet.2016.11.003
Strelko, C. L. et al. Itaconic acid is a mammalian metabolite induced during macrophage activation. J. Am. Chem. Soc. 133, 16386–16389 (2011).
pubmed: 21919507 pmcid: 3216473 doi: 10.1021/ja2070889
Daniels, B. P. et al. The nucleotide sensor ZBP1 and kinase RIPK3 induce the enzyme IRG1 to promote an antiviral metabolic state in neurons. Immunity 50, 64–76 e64 (2019).
pubmed: 30635240 pmcid: 6342485 doi: 10.1016/j.immuni.2018.11.017
Hooftman, A. & O’Neill, L. A. J. The immunomodulatory potential of the metabolite itaconate. Trends Immunol. 40, 687–698 (2019).
pubmed: 31178405 doi: 10.1016/j.it.2019.05.007
O’Neill, L. A. J. & Artyomov, M. N. Itaconate: the poster child of metabolic reprogramming in macrophage function. Nat. Rev. Immunol. 19, 273–281 (2019).
pubmed: 30705422 doi: 10.1038/s41577-019-0128-5
Zhang, Z. C. C. et al. Itaconate is a lysosomal inducer that promotes antibacterial innate immunity. Mol. Cell https://doi.org/10.1016/j.molcel.2022.05.009 (2022).
Duncan, D., Lupien, A., Behr, M. A. & Auclair, K. Effect of pH on the antimicrobial activity of the macrophage metabolite itaconate. Microbiology https://doi.org/10.1099/mic.0.001050 (2021).
Ruetz, M. et al. Itaconyl-CoA forms a stable biradical in methylmalonyl-CoA mutase and derails its activity and repair. Science 366, 589–593 (2019).
pubmed: 31672889 pmcid: 7070230 doi: 10.1126/science.aay0934
Reens, A. L., Nagy, T. A. & Detweiler, C. S. Salmonella enterica requires lipid metabolism genes to replicate in proinflammatory macrophages and mice. Infect. Immun. https://doi.org/10.1128/IAI.00776-19 (2019).
Fang, F. C., Libby, S. J., Castor, M. E. & Fung, A. M. Isocitrate lyase (AceA) is required for Salmonella persistence but not for acute lethal infection in mice. Infect. Immun. 73, 2547–2549 (2005).
pubmed: 15784602 pmcid: 1087437 doi: 10.1128/IAI.73.4.2547-2549.2005
Runtsch, M. C. et al. Itaconate and itaconate derivatives target JAK1 to suppress alternative activation of macrophages. Cell Metab. 34, 487–501 e488 (2022).
pubmed: 35235776 doi: 10.1016/j.cmet.2022.02.002
Lu, H. et al. TFEB inhibits endothelial cell inflammation and reduces atherosclerosis. Sci. Signal. https://doi.org/10.1126/scisignal.aah4214 (2017).
Nezich, C. L., Wang, C., Fogel, A. I. & Youle, R. J. MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5. J. Cell Biol. 210, 435–450 (2015).
pubmed: 26240184 pmcid: 4523611 doi: 10.1083/jcb.201501002
Roczniak-Ferguson, A. et al. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci. Signal. 5, ra42 (2012).
pubmed: 22692423 pmcid: 3437338 doi: 10.1126/scisignal.2002790
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886 doi: 10.1093/bioinformatics/bts635
Liao, Y., Smyth, G. K. & Shi, W. The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 41, e108 (2013).
pubmed: 23558742 pmcid: 3664803 doi: 10.1093/nar/gkt214
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281 pmcid: 4302049 doi: 10.1186/s13059-014-0550-8
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
pubmed: 24695404 pmcid: 4103590 doi: 10.1093/bioinformatics/btu170
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
pubmed: 22388286 pmcid: 3322381 doi: 10.1038/nmeth.1923
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943 pmcid: 2723002 doi: 10.1093/bioinformatics/btp352
Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).
pubmed: 18798982 pmcid: 2592715 doi: 10.1186/gb-2008-9-9-r137
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
pubmed: 20110278 pmcid: 2832824 doi: 10.1093/bioinformatics/btq033
Ramirez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).
pubmed: 27079975 pmcid: 4987876 doi: 10.1093/nar/gkw257
Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).
pubmed: 20513432 pmcid: 2898526 doi: 10.1016/j.molcel.2010.05.004
Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: scanning for occurrences of a given motif. Bioinformatics 27, 1017–1018 (2011).
pubmed: 21330290 pmcid: 3065696 doi: 10.1093/bioinformatics/btr064
Bailey, T. L. et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37, W202–W208 (2009).
pubmed: 19458158 pmcid: 2703892 doi: 10.1093/nar/gkp335
Ptasinska, A. et al. Depletion of RUNX1/ETO in t(8;21) AML cells leads to genome-wide changes in chromatin structure and transcription factor binding. Leukemia 26, 1829–1841 (2012).
pubmed: 22343733 pmcid: 3419980 doi: 10.1038/leu.2012.49
Rueden, C. T. et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform. 18, 529 (2017).
doi: 10.1186/s12859-017-1934-z
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
pubmed: 22743772 doi: 10.1038/nmeth.2019
Hapfelmeier, S. et al. The Salmonella pathogenicity island (SPI)-2 and SPI-1 type III secretion systems allow Salmonella serovar Typhimurium to trigger colitis via MyD88-dependent and MyD88-independent mechanisms. J. Immunol. 174, 1675–1685 (2005).
pubmed: 15661931 doi: 10.4049/jimmunol.174.3.1675
Hulsen, T., de Vlieg, J. & Alkema, W. BioVenn—a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genomics 9, 488 (2008).
pubmed: 18925949 pmcid: 2584113 doi: 10.1186/1471-2164-9-488
Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).
pubmed: 21221095 pmcid: 3346182 doi: 10.1038/nbt.1754

Auteurs

Ev-Marie Schuster (EM)

Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany.
Faculty of Biology, University of Freiburg, Freiburg, Germany.

Maximilian W Epple (MW)

Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany.
Faculty of Biology, University of Freiburg, Freiburg, Germany.

Katharina M Glaser (KM)

International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany.
Faculty of Biology, University of Freiburg, Freiburg, Germany.
Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany.

Michael Mihlan (M)

Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany.

Kerstin Lucht (K)

Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.

Julia A Zimmermann (JA)

Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany.
Faculty of Biology, University of Freiburg, Freiburg, Germany.
Center of Chronic Immunodeficiency, Medical Center University of Freiburg, Freiburg, Germany.

Anna Bremser (A)

Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.

Aikaterini Polyzou (A)

International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany.
Faculty of Biology, University of Freiburg, Freiburg, Germany.
Department of Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.

Nadine Obier (N)

Department of Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.

Nina Cabezas-Wallscheid (N)

Department of Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.

Eirini Trompouki (E)

Department of Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
IRCAN Institute for Research on Cancer and Aging, INSERM Unité 1081, CNRS UMR 7284, Université Côte d'Azur, Nice, France.

Andrea Ballabio (A)

Telethon Institute of Genetics and Medicine, Medical Genetics Unit, Department of Medical and Translational Science and SSM School for Advanced Studies, Federico II University, Naples, Italy.
Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.

Jörg Vogel (J)

Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research (HZI), University of Würzburg, Würzburg, Germany.
Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany.

Joerg M Buescher (JM)

Metabolomics Core Facility, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.

Alexander J Westermann (AJ)

Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research (HZI), University of Würzburg, Würzburg, Germany.
Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany.

Angelika S Rambold (AS)

Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany. rambold@ie-freiburg.mpg.de.
Center of Chronic Immunodeficiency, Medical Center University of Freiburg, Freiburg, Germany. rambold@ie-freiburg.mpg.de.

Articles similaires

Animals Dogs Dog Diseases Autophagy Immunohistochemistry
Endometriosis Female Humans Animals Mice
Humans Stomach Neoplasms Macrophages Tumor Microenvironment Disease Progression
Animals Humans TOR Serine-Threonine Kinases Lupus Erythematosus, Systemic Arthritis, Rheumatoid

Classifications MeSH