Micro-fluidic Spray Freeze Dried Ciprofloxacin Hydrochloride-Embedded Dry Powder for Inhalation.

Active pharmaceutical ingredient-embedded dry powder for inhalation (AeDPI) Adjustable freezing temperature High fine particle fraction Porous and brittle microparticle Spray freeze drying

Journal

AAPS PharmSciTech
ISSN: 1530-9932
Titre abrégé: AAPS PharmSciTech
Pays: United States
ID NLM: 100960111

Informations de publication

Date de publication:
02 Aug 2022
Historique:
received: 04 05 2022
accepted: 15 07 2022
entrez: 1 8 2022
pubmed: 2 8 2022
medline: 4 8 2022
Statut: epublish

Résumé

Active pharmaceutical ingredient (API)-embedded dry powder for inhalation (AeDPI) is highly desirable for pulmonary delivery of high-dose drug. Herein, a series of spray freeze-dried (SFD) ciprofloxacin hydrochloride (CH)-embedded dry powders were fabricated via a self-designed micro-fluidic spray freeze tower (MFSFT) capable of tuning freezing temperature of cooling air as the refrigerant medium. The effects of total solid content (TSC), mass ratio of CH to

Identifiants

pubmed: 35915199
doi: 10.1208/s12249-022-02371-0
pii: 10.1208/s12249-022-02371-0
doi:

Substances chimiques

Aerosols 0
Powders 0
Ciprofloxacin 5E8K9I0O4U
Leucine GMW67QNF9C

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

211

Subventions

Organisme : the Postdoctoral Science Foundation of Jiangsu Province
ID : 2021K356C
Organisme : the Particle Engineering Laboratory at Soochow University
ID : SDHY2136
Organisme : the National Natural Science Foundation of China
ID : 21878197
Organisme : the Natural Science Foundation of Jiangsu Province
ID : BK20180096
Organisme : Jiangsu Higher Education Institutions
ID : 18KJA530004
Organisme : Suzhou Municipal Science and Technology Bureau
ID : SYG201810

Informations de copyright

© 2022. The Author(s), under exclusive licence to American Association of Pharmaceutical Scientists.

Références

Dunn LJ, Kerwin EM, DeAngelis K, Darken P, Gillen M, Dorinsky P. Pharmacokinetics of budesonide/glycopyrrolate/formoterol fumarate metered dose inhaler formulated using co-suspension delivery technology after single and chronic dosing in patients with COPD. Pulm Pharmacol Ther. 2020;60: 101873. https://doi.org/10.1016/j.pupt.2019.101873 .
doi: 10.1016/j.pupt.2019.101873 pubmed: 31841699
Chan HK, Chew NYK. Novel alternative methods for the delivery of drugs for the treatment of asthma. Adv Drug Deliv Rev. 2003;55:793–805. https://doi.org/10.1016/S0169-409X(03)00078-4 .
doi: 10.1016/S0169-409X(03)00078-4 pubmed: 12842601
Cipolla D. Will pulmonary drug delivery for systemic application ever fulfill its rich promise? Expert Opin Drug Deliv. 2016;13:1337–40. https://doi.org/10.1080/17425247.2016.1218466 .
doi: 10.1080/17425247.2016.1218466 pubmed: 27464271
Quarta E, Chierici V, Flammini L, Tognolini M, Barocelli E, Cantoni AM, et al. Excipient-free pulmonary insulin dry powder: pharmacokinetic and pharmacodynamics profiles in rats. J Control Release. 2020;323:412–20. https://doi.org/10.1016/j.jconrel.2020.04.015 .
doi: 10.1016/j.jconrel.2020.04.015 pubmed: 32325175
Paik J. Levodopa inhalation powder: a review in Parkinson’s disease. Drugs. 2020;80:821–8. https://doi.org/10.1007/s40265-020-01307-x .
doi: 10.1007/s40265-020-01307-x pubmed: 32319076
Cipolla D, Chan HK. Current and emerging inhaled therapies of repositioned drugs. Adv Drug Deliv Rev. 2018;133:1–4. https://doi.org/10.1016/j.addr.2018.09.008 .
doi: 10.1016/j.addr.2018.09.008 pubmed: 30409263
Zhou QT, Leung SSY, Tang P, Parumasivam T, Loh ZH, Chan HK. Inhaled formulations and pulmonary drug delivery systems for respiratory infections. Adv Drug Deliv Rev. 2015;85:83–99. https://doi.org/10.1016/j.addr.2014.10.022 .
doi: 10.1016/j.addr.2014.10.022 pubmed: 25451137
DePietro M, Gilbert I, Millette LA, Riebe M. Inhalation device options for the management of chronic obstructive pulmonary disease. Postgrad Med. 2018;130:83–97. https://doi.org/10.1080/00325481.2018.1399042 .
doi: 10.1080/00325481.2018.1399042 pubmed: 29210318
Chandel A, Goyal AK, Ghosh G, Rath G. Recent advances in aerosolised drug delivery. Biomed Pharmacother. 2019;112: 108601. https://doi.org/10.1016/j.biopha.2019.108601 .
doi: 10.1016/j.biopha.2019.108601 pubmed: 30780107
Kadu P, Kendre P, Gursal K. Dry powder inhaler: a review. J Adv Drug Deliv. 2016;3:42–52. https://doi.org/10.1016/j.ijpharm.2008.04.044 .
doi: 10.1016/j.ijpharm.2008.04.044
de Boer AH, Hagedoorn P, Hoppentocht M, Buttini F, Grasmeijer F, Frijlink HW. Dry powder inhalation: past, present and future. Expert Opin Drug Deliv. 2017;14:499–512. https://doi.org/10.1080/17425247.2016.1224846 .
doi: 10.1080/17425247.2016.1224846 pubmed: 27534768
Pilcer G, Wauthoz N, Amighi K. Lactose characteristics and the generation of the aerosol. Adv Drug Deliv Rev. 2012;64:233–56. https://doi.org/10.1016/j.addr.2011.05.003 .
doi: 10.1016/j.addr.2011.05.003 pubmed: 21616107
Nichols DP, Durmowicz AG, Field A, Flume PA, VanDevanter DR, Mayer-Hamblett N. Developing inhaled antibiotics in cystic fibrosis: current challenges and opportunities. Ann Am Thorac Soc. 2019;16:534–9. https://doi.org/10.1513/AnnalsATS.201812-863OT .
doi: 10.1513/AnnalsATS.201812-863OT pubmed: 30658043 pmcid: 6491060
Weers J. Inhaled antimicrobial therapy - barriers to effective treatment. Adv Drug Deliv Rev. 2015;85:24–43. https://doi.org/10.1016/j.addr.2014.08.013 .
doi: 10.1016/j.addr.2014.08.013 pubmed: 25193067
Parumasivam T, Chang RYK, Abdelghany S, T. Ye T, Britton WJ, Chan HK. Dry powder inhalable formulations for anti-tubercular therapy. Adv Drug Deliv Rev. 2016;102:83–101. https://doi.org/10.1016/j.addr.2016.05.011 .
Benke E, Winter C, Szabó-Révész P, Roblegg E, Ambrus R. The effect of ethanol on the habit and in vitro aerodynamic results of dry powder inhalation formulations containing ciprofloxacin hydrochloride. Asian J Pharm Sci. 2021;16:471–82. https://doi.org/10.1016/j.ajps.2021.04.003 .
doi: 10.1016/j.ajps.2021.04.003 pubmed: 34703496 pmcid: 8520052
Lechanteur A, Evrard B. Influence of composition and spray-drying process parameters on carrier-free DPI properties and behaviors in the lung: a review. Pharmaceutics. 2020;12:1–21. https://doi.org/10.3390/pharmaceutics12010055 .
doi: 10.3390/pharmaceutics12010055
Brunaugh AD, Smyth HDC. Formulation techniques for high dose dry powders. Int J Pharm. 2018;547(1–2):489–98. https://doi.org/10.1016/j.ijpharm.2018.05.036 .
doi: 10.1016/j.ijpharm.2018.05.036 pubmed: 29778822
Alhajj N, O’Reilly NJ, Cathcart H. Designing enhanced spray dried particles for inhalation: a review of the impact of excipients and processing parameters on particle properties. Powder Technol. 2021;384:313–31. https://doi.org/10.1016/j.powtec.2021.02.031 .
doi: 10.1016/j.powtec.2021.02.031
Miranda MS, Rodrigues MT, Domingues RMA, Torrado E, Reis RL, Pedrosa J, et al. Exploring inhalable polymeric dry powders for anti-tuberculosis drug delivery. Mater Sci Eng C. 2018;93:1090–103. https://doi.org/10.1016/j.msec.2018.09.004 .
doi: 10.1016/j.msec.2018.09.004
Pardeshi S, More M, Patil P, Pardeshi C, Deshmukh P, Mujumdar A. A meticulous overview on drying-based (spray-, freeze-, and spray-freeze) particle engineering approaches for pharmaceutical technologies. Dry Technol. 2021;9:1447–91. https://doi.org/10.1080/07373937.2021.1893330 .
Shetty N, Cipolla D, Park H, Zhou QT. Physical stability of dry powder inhaler formulations. Expert Opin Drug Deliv. 2020;17:77–96. https://doi.org/10.1080/17425247.2020.1702643 .
doi: 10.1080/17425247.2020.1702643 pubmed: 31815554
Chen L, Okuda T, Lu XY, Chan HK. Amorphous powders for inhalation drug delivery. Adv Drug Deliv Rev. 2016;100:102–15. https://doi.org/10.1016/j.addr.2016.01.002 .
doi: 10.1016/j.addr.2016.01.002 pubmed: 26780404
Vehring R. Pharmaceutical particle engineering via spray drying. Pharm Res. 2008;25:999–1022. https://doi.org/10.1007/s11095-007-9475-1 .
doi: 10.1007/s11095-007-9475-1 pubmed: 18040761
Nandiyanto ABD, Ogi T, Wang WN, Gradon L, Okuyama K. Template-assisted spray-drying method for the fabrication of porous particles with tunable structures. Adv Powder Technol. 2019;30:2908–24. https://doi.org/10.1016/j.apt.2019.08.037 .
doi: 10.1016/j.apt.2019.08.037
Topal GR, Devrim B, Eryilmaz M, Bozkir A. Design of ciprofloxacin-loaded nano-and microcomposite particles for dry powder inhaler formulations: preparation, in vitro characterisation, and antimicrobial efficacy. J Microencapsul. 2018;35:533–47. https://doi.org/10.1080/02652048.2018.1523970 .
doi: 10.1080/02652048.2018.1523970 pubmed: 30213209
El-Gendy N, Desai V, Berkland C. Agglomerates of ciprofloxacin nanoparticles yield fine dry powder aerosols. J Pharm Innov. 2010;5:79–87. https://doi.org/10.1007/s12247-010-9082-2 .
doi: 10.1007/s12247-010-9082-2
Wanning S, Süverkrüp R, Lamprecht A. Pharmaceutical spray freeze drying. Int J Pharm. 2015;488:136–53. https://doi.org/10.1016/j.ijpharm.2015.04.053 .
doi: 10.1016/j.ijpharm.2015.04.053 pubmed: 25900097
Vishali DA, Monisha J, Sivakamasundari SK, Moses JA, Anandharamakrishnan C. Spray freeze drying: emerging applications in drug delivery. J Control Release. 2019;300:93–101. https://doi.org/10.1016/j.jconrel.2019.02.044 .
doi: 10.1016/j.jconrel.2019.02.044 pubmed: 30836115
Ishwarya SP, Anandharamakrishnan C, Stapley AGF. Spray-freeze-drying: a novel process for the drying of foods and bioproducts. Trends Food Sci Technol. 2015;41:161–81. https://doi.org/10.1016/j.tifs.2014.10.008 .
doi: 10.1016/j.tifs.2014.10.008
Weers J, Tarara T. The PulmoSphereTM platform for pulmonary drug delivery. Ther Deliv. 2014;5:277–95. https://doi.org/10.4155/tde.14.3 .
doi: 10.4155/tde.14.3 pubmed: 24592954
Healy AM, Amaro MI, Paluch KJ, Tajber L. Dry powders for oral inhalation free of lactose carrier particles. Adv Drug Deliv Rev. 2014;75:32–52. https://doi.org/10.1016/j.addr.2014.04.005 .
doi: 10.1016/j.addr.2014.04.005 pubmed: 24735676
Yu H, Tran TT, Teo J, Hadinoto K. Dry powder aerosols of curcumin-chitosan nanoparticle complexprepared by spray freeze drying and their antimicrobial efficacyagainst common respiratory bacterial pathogens. Colloid Surface A. 2016;504:34–42. https://doi.org/10.1016/j.colsurfa.2016.05.053 .
doi: 10.1016/j.colsurfa.2016.05.053
Wanning S, Süverkrüp R, Lamprecht A. Impact of excipient choice on the aerodynamic performance of inhalable spray-freeze-dried powders. Int J Pharm. 2020;586: 119564. https://doi.org/10.1016/j.ijpharm.2020.119564 .
doi: 10.1016/j.ijpharm.2020.119564 pubmed: 32590097
Yu H, Teo J, Chew JW, Hadinoto K. Dry powder inhaler formulation of high-payload antibiotic nanoparticle complex intended for bronchiectasis therapy: spray drying versus spray freeze drying preparation. Int J Pharm. 2016;499:38–46. https://doi.org/10.1016/j.ijpharm.2015.12.072 .
doi: 10.1016/j.ijpharm.2015.12.072 pubmed: 26757148
Zhu C, Chen J, Yu S, Que C, Taylor LS, Tan W, Wu C, Zhou QT. Inhalable nanocomposite microparticles with enhanced dissolution and superior aerosol performance. Mol Pharm. 2020;17:3270–80. https://doi.org/10.1021/acs.molpharmaceut.0c00390 .
doi: 10.1021/acs.molpharmaceut.0c00390 pubmed: 32643939 pmcid: 7484320
Engstrom JD, Simpson DT, Lai ES, Williams RO, Johnston KP. Morphology of protein particles produced by spray freezing of concentrated solutions. Eur J Pharm Biopharm. 2007;65:149–62. https://doi.org/10.1016/j.ejpb.2006.08.005 .
doi: 10.1016/j.ejpb.2006.08.005 pubmed: 17010582
Feng H, Xu Y, Yang T. Study on Leidenfrost effect of cryoprotectant droplets on liquid nitrogen with IR imaging technology and non-isothermal crystallization kinetics model. Int J Heat Mass Transf. 2018;127:413–21. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.001 .
doi: 10.1016/j.ijheatmasstransfer.2018.08.001
Sharma G, Mueannoom W, Buanz ABM, Taylor KMG, Gaisford S. In vitro characterisation of terbutaline sulphate particles prepared by thermal ink-jet spray freeze drying. Int J Pharm. 2013;447:165–70. https://doi.org/10.1016/j.ijpharm.2013.02.045 .
doi: 10.1016/j.ijpharm.2013.02.045 pubmed: 23454848
Leuenberger H, Plitzko M, Puchkov M. Spray freeze drying in a fluidized bed at normal and low pressure. Dry Technol. 2006;24:711–9. https://doi.org/10.1080/07373930600684932 .
doi: 10.1080/07373930600684932
Di A, Zhang S, Liu X, Tong Z, Sun S, Tang Z. Microfluidic spray dried and spray freeze dried uniform microparticles potentially for intranasal drug delivery and controlled release. Powder Technol. 2020;379:144–53. https://doi.org/10.1016/j.powtec.2020.10.061 .
doi: 10.1016/j.powtec.2020.10.061
Vidyavathi M, Srividya G. A review on ciprofloxacin: dosage form perspective. Int J Appl Pharm. 2018;10:6–10. https://doi.org/10.22159/ijap.2018v10i4.25315 .
Hurley M, Smyth A. Fluoroquinolones in the treatment of bronchopulmonary disease in cystic fibrosis. Ther Adv Respir Dis. 2012;6:363–73. https://doi.org/10.1177/1753465812459899 .
doi: 10.1177/1753465812459899 pubmed: 22968160
Wu D, Zhang S, Liao Z, Wu Z, Xiao J, Chen X. Freezing temperature controllable spray freezing tower for preparing micron-sized spherical ice particles. US10436493 B2. 2019.
Wu D, Liao Z, Zhang S, Wu Z, Xiao J, Chen X. Double-sealing type apparatus for collecting spray freeze ice ball particles and collecting method thereof. US10337796 B2. 2019.
Hao T. Understanding empirical powder flowability criteria scaled by Hausner ratio or Carr index with the analogous viscosity concept. RSC Adv. 2015;5:57212–5. https://doi.org/10.1039/C5RA07197F .
doi: 10.1039/C5RA07197F
Bae EK, Lee SJ. Microencapsulation of avocado oil by spray drying using whey protein and maltodextrin. J Microencapsul. 2008;25:549–60. https://doi.org/10.1080/02652040802075682 .
doi: 10.1080/02652040802075682 pubmed: 18465295
Kirk JH, Dann SE, Blatchford CG. Lactose: a definitive guide to polymorph determination. Int J Pharm. 2007;334:103–14. https://doi.org/10.1016/j.ijpharm.2006.10.026 .
doi: 10.1016/j.ijpharm.2006.10.026 pubmed: 17110062
Yazdanpanah N, Langrish TAG. Heterogeneous particle structure formation during post-crystallization of spray-dried powder. Particuology. 2016;27:72–9. https://doi.org/10.1016/j.partic.2015.09.007 .
doi: 10.1016/j.partic.2015.09.007
Shetty N, Park H, Zemlyanov D, Mangal S, Bhujbal S, Zhou Q. Influence of excipients on physical and aerosolization stability of spray dried high-dose powder formulations for inhalation. Int J Pharm. 2018;544:222–34. https://doi.org/10.1016/j.ijpharm.2018.04.034 .
doi: 10.1016/j.ijpharm.2018.04.034 pubmed: 29678544 pmcid: 5959799
Bhatnagar B, Tchessalov S, Ohtake S, Sebasti IB, Plitzko M, Luy B, et al. Bulk dynamic spray freeze-drying part 1: modeling of droplet cooling and phase change. J Pharm Sci. 2019;108:2063–74. https://doi.org/10.1016/j.xphs.2019.01.009 .
doi: 10.1016/j.xphs.2019.01.009 pubmed: 30677417
Zhang S, Lei H, Gao X, Xiong X, Wu WD, Wu Z, et al. Fabrication of uniform enzyme-immobilized carbohydrate microparticles with high enzymatic activity and stability via spray drying and spray freeze drying. Powder Technol. 2018;330:40–9. https://doi.org/10.1016/j.powtec.2018.02.020 .
doi: 10.1016/j.powtec.2018.02.020
Kasper JC, Friess W. The freezing step in lyophilization: Physico-chemical fundamentals, freezing methods and consequences on process performance and quality attributes of biopharmaceuticals. Eur J Pharm Biopharm. 2011;78:248–63. https://doi.org/10.1016/j.ejpb.2011.03.010 .
doi: 10.1016/j.ejpb.2011.03.010 pubmed: 21426937
Carr RL. Evaluating flow properties of solids. Chem Eng. 1965;72:163–8. https://doi.org/10.1016/j.ijpharm.2018.05.061 .
doi: 10.1016/j.ijpharm.2018.05.061
Thakkar SG, Warnken ZN, Alzhrani RF, Valdes SA, Aldayel AM, Xu H, et al. Intranasal immunization with aluminum salt-adjuvanted dry powder vaccine. J Control Release. 2018;292:111–8. https://doi.org/10.1016/j.jconrel.2018.10.020 .
doi: 10.1016/j.jconrel.2018.10.020 pubmed: 30339906 pmcid: 6328263
Freeman R. Measuring the flow properties of consolidated, conditioned and aerated powders - a comparative study using a powder rheometer and a rotational shear cell. Powder Technol. 2007;174:25–33. https://doi.org/10.1016/j.powtec.2006.10.016 .
doi: 10.1016/j.powtec.2006.10.016
Zhang X, Zhao Z, Cui Y, Liu F, Huang Z, Huang Y, et al. Effect of powder properties on the aerosolization performance of nanoporous mannitol particles as dry powder inhalation carriers. Powder Technol. 2019;358:46–54. https://doi.org/10.1016/j.powtec.2018.08.058 .
doi: 10.1016/j.powtec.2018.08.058
Ma X, Yan S, Zhang S, Yin Q, Chen X, Wu WD. Shell-formation mediated surface composition of uniform two-component microparticles fabricated by micro-fluidic spray drying: effect of component size and solubility. Particuology. 2021;67:68–78. https://doi.org/10.1016/j.partic.2021.10.005 .
doi: 10.1016/j.partic.2021.10.005
Ordoubadi M, Gregson FKA, Wang H, Nicholas M, Gracin S, Lechuga-ballesteros D, et al. On the particle formation of leucine in spray drying of inhalable microparticles. Int J Pharm. 2020;592: 120102. https://doi.org/10.1016/j.ijpharm.2020.120102 .
doi: 10.1016/j.ijpharm.2020.120102 pubmed: 33227375
You X, Zhou Z, Liao Z, Che L, Chen XD, Duo W, et al. Dairy milk particles made with a mono-disperse droplet spray dryer (MDDSD) investigated for the effect of fat. Dry Technol. 2014;32:37–41. https://doi.org/10.1080/07373937.2013.840650 .
doi: 10.1080/07373937.2013.840650
Putra OD, Pettersen A, Yonemochi E, Uekusa H. Structural origin of physicochemical properties differences upon dehydration and polymorphic transformation of ciprofloxacin hydrochloride revealed by structure determination from powder X-ray diffraction data. CrystEngComm. 2020;22:7272–9. https://doi.org/10.1039/d0ce00261e .
doi: 10.1039/d0ce00261e
Liu Y, Wang J, Yin Q. The crystal habit of ciprofloxacin hydrochloride monohydrate crystal. J Cryst Growth. 2005;276:237–42. https://doi.org/10.1016/j.jcrysgro.2004.11.323 .
doi: 10.1016/j.jcrysgro.2004.11.323
Razuc M, Piña J, Ramírez-rigo MV. Optimization of ciprofloxacin hydrochloride spray-dried microparticles for pulmonary delivery using design of experiments. AAPS. 2018;19:3085–96. https://doi.org/10.1208/s12249-018-1137-6 .
doi: 10.1208/s12249-018-1137-6
Zordok WA. Interaction of vanadium (IV) solvates (L) with second-generation fluoroquinolone antibacterial drug ciprofloxacin: spectroscopic, structure, thermal analyses, kinetics and biolog. Spectrochim Acta Part A: Mol Biomol Spectrosc. 2014;129:519–36. https://doi.org/10.1016/j.saa.2014.02.087 .
doi: 10.1016/j.saa.2014.02.087
Adhikari S, Kar T. Bulk single crystal growth and characterization of L-leucine- a nonlinear optical material. Mater Chem Phys. 2012;133:1055–9. https://doi.org/10.1016/j.matchemphys.2012.02.015 .
doi: 10.1016/j.matchemphys.2012.02.015
Joseph J, Jemmis ED. Red-, blue-, or no-shift in hydrogen bonds: a unified explanation. J Adv Drug Deliv. 2007;129:4620–32. https://doi.org/10.1021/ja067545 .
doi: 10.1021/ja067545
Thakuria R, Sarma B, Nangia A, Screening H. Hydrogen Bonding in Molecular Crystals. Compr Supramol Chem. 2017;II(7):25–48. https://doi.org/10.1016/B978-0-12-409547-2.12598-3 .
doi: 10.1016/B978-0-12-409547-2.12598-3
Wang YB, Watts AB, Williams RO. Effect of processing parameters on the physicochemical and aerodynamic properties of respirable brittle matrix powders. J Drug Deliv Sci Technol. 2014;24:390–6. https://doi.org/10.1016/S1773-2247(14)50079-2 .
doi: 10.1016/S1773-2247(14)50079-2
Assegehegn G, Brito-de la Fuente E, Franco JM, and Gallegos C. The importance of understanding the freezing step and its impact on freeze-drying process performance. J Pharm Sci. 2019;108:1378–95. https://doi.org/10.1016/j.xphs.2018.11.03 .
Li L, Leung SSY, Gengenbach T, Yu J, Gao G, Tang P, et al. Investigation of L-leucine in reducing the moisture-induced deterioration of spray-dried salbutamol sulfate powder for inhalation. Int J Pharm. 2017;530:30–9. https://doi.org/10.1016/j.ijpharm.2017.07.033 .
doi: 10.1016/j.ijpharm.2017.07.033 pubmed: 28709940
Karimi K, Katona G, Csóka I, Ambrus R. Physicochemical stability and aerosolization performance of dry powder inhalation system containing ciprofloxacin hydrochloride. J Pharm Biomed Anal. 2018;148:73–9. https://doi.org/10.1016/j.jpba.2017.09.019 .
doi: 10.1016/j.jpba.2017.09.019 pubmed: 28965047
Otake H, Okuda T, Okamoto H. Development of spray-freeze-fried powders for inhalation with high inhalation performance and antihygroscopic property. Chem Pharm Bull. 2016;64:239–45. https://doi.org/10.1248/cpb.c15-00824 .
doi: 10.1248/cpb.c15-00824

Auteurs

Yingjie Chen (Y)

Engineering Research Centre of Advanced Powder Technology (ERCAPT), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, 215123, People's Republic of China.

Shen Yan (S)

Engineering Research Centre of Advanced Powder Technology (ERCAPT), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, 215123, People's Republic of China.

Shengyu Zhang (S)

Engineering Research Centre of Advanced Powder Technology (ERCAPT), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, 215123, People's Republic of China.

Quanyi Yin (Q)

Engineering Research Centre of Advanced Powder Technology (ERCAPT), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, 215123, People's Republic of China. qyyin@suda.edu.cn.

Xiao Dong Chen (XD)

Engineering Research Centre of Advanced Powder Technology (ERCAPT), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, 215123, People's Republic of China.

Winston Duo Wu (WD)

Engineering Research Centre of Advanced Powder Technology (ERCAPT), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, 215123, People's Republic of China. duo.wu@suda.edu.cn.

Articles similaires

Aerosols Humans Decontamination Air Microbiology Masks
Animals Dietary Fiber Dextran Sulfate Mice Disease Models, Animal
Calcium Carbonate Sand Powders Construction Materials Materials Testing
Nanoparticles Needles Polylactic Acid-Polyglycolic Acid Copolymer Polyethylene Glycols Curcumin

Classifications MeSH