Highly efficient and selective extraction of gold by reduced graphene oxide.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
02 08 2022
02 08 2022
Historique:
received:
21
03
2022
accepted:
21
07
2022
entrez:
2
8
2022
pubmed:
3
8
2022
medline:
5
8
2022
Statut:
epublish
Résumé
Materials capable of extracting gold from complex sources, especially electronic waste (e-waste), are needed for gold resource sustainability and effective e-waste recycling. However, it remains challenging to achieve high extraction capacity and precise selectivity if only a trace amount of gold is present along with other metallic elements . Here we report an approach based on reduced graphene oxide (rGO) which provides an ultrahigh capacity and selective extraction of gold ions present in ppm concentrations (>1000 mg of gold per gram of rGO at 1 ppm). The excellent gold extraction performance is accounted to the graphene areas and oxidized regions of rGO. The graphene areas spontaneously reduce gold ions to metallic gold, and the oxidized regions allow good dispersibility of the rGO material so that efficient adsorption and reduction of gold ions at the graphene areas can be realized. By controlling the protonation of the oxidized regions of rGO, gold can be extracted exclusively, without contamination by the other 14 co-existing elements typically present in e-waste. These findings are further exploited to demonstrate recycling gold from real-world e-waste with good scalability and economic viability, as exemplified by using rGO membranes in a continuous flow-through process.
Identifiants
pubmed: 35918342
doi: 10.1038/s41467-022-32204-4
pii: 10.1038/s41467-022-32204-4
pmc: PMC9345893
doi:
Substances chimiques
graphene oxide
0
Gold
7440-57-5
Graphite
7782-42-5
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
4472Informations de copyright
© 2022. The Author(s).
Références
J Am Chem Soc. 2021 Feb 3;143(4):1984-1992
pubmed: 33378203
J Am Chem Soc. 2018 Dec 5;140(48):16697-16703
pubmed: 30395464
Angew Chem Int Ed Engl. 2017 Aug 1;56(32):9331-9335
pubmed: 28613435
Dalton Trans. 2013 Apr 28;42(16):5682-9
pubmed: 23443993
Nanotechnology. 2010 Jul 16;21(28):285205
pubmed: 20585167
Waste Manag. 2015 Nov;45:258-71
pubmed: 25704926
Nat Commun. 2013;4:1855
pubmed: 23673640
Nat Commun. 2021 Oct 29;12(1):6258
pubmed: 34716348
Environ Sci Technol. 2013 Jun 18;47(12):6288-96
pubmed: 23668881
Nano Lett. 2011 Aug 10;11(8):3190-6
pubmed: 21696186
ACS Appl Mater Interfaces. 2020 Jul 8;12(27):30474-30482
pubmed: 32588621
Nat Mater. 2018 Dec;17(12):1050-1051
pubmed: 30470834
Environ Sci Technol. 2015 Jul 07;49(13):7981-8
pubmed: 26061274
Sci Adv. 2017 Apr 05;3(4):e1601939
pubmed: 28435877
RSC Adv. 2020 Jan 27;10(8):4300-4309
pubmed: 35495234
Nature. 2016 Aug 03;536(7614):23-5
pubmed: 27488785
Proc Natl Acad Sci U S A. 2020 Jul 14;117(28):16174-16180
pubmed: 32571947
ACS Nano. 2010 Sep 28;4(9):5245-52
pubmed: 20815368
Science. 2021 Dec 03;374(6572):1215-1221
pubmed: 34672694
Nat Commun. 2021 May 31;12(1):3248
pubmed: 34059677
J Hazard Mater. 2007 May 8;143(1-2):220-5
pubmed: 17049733
ACS Nano. 2010 Aug 24;4(8):4595-600
pubmed: 20731442
Science. 2012 Aug 10;337(6095):690-5
pubmed: 22879508
ACS Nano. 2010 May 25;4(5):2689-94
pubmed: 20433163
Adv Mater. 2010 Oct 25;22(40):4467-72
pubmed: 20717985
J Am Chem Soc. 2010 Jun 16;132(23):8180-6
pubmed: 20527938
Nat Nanotechnol. 2008 Feb;3(2):101-5
pubmed: 18654470