A mitotic chromatin phase transition prevents perforation by microtubules.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
09 2022
Historique:
received: 02 07 2021
accepted: 27 06 2022
pubmed: 4 8 2022
medline: 9 9 2022
entrez: 3 8 2022
Statut: ppublish

Résumé

Dividing eukaryotic cells package extremely long chromosomal DNA molecules into discrete bodies to enable microtubule-mediated transport of one genome copy to each of the newly forming daughter cells

Identifiants

pubmed: 35922507
doi: 10.1038/s41586-022-05027-y
pii: 10.1038/s41586-022-05027-y
pmc: PMC9433320
mid: EMS153637
doi:

Substances chimiques

Chromatin 0
Histones 0
DNA 9007-49-2

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

183-190

Subventions

Organisme : European Research Council
ID : 101019039
Pays : International
Organisme : NIGMS NIH HHS
ID : F32 GM129925
Pays : United States
Organisme : Austrian Science Fund FWF
ID : W 1238
Pays : Austria
Organisme : Howard Hughes Medical Institute
Pays : United States

Commentaires et corrections

Type : CommentIn

Informations de copyright

© 2022. The Author(s).

Références

Batty, P. & Gerlich, D. W. Mitotic chromosome mechanics: how cells segregate their genome. Trends Cell Biol. 29, 717–726 (2019).
pubmed: 31230958 doi: 10.1016/j.tcb.2019.05.007
Kschonsak, M. & Haering, C. H. Shaping mitotic chromosomes: from classical concepts to molecular mechanisms. BioEssays 37, 755–766 (2015).
pubmed: 25988527 pmcid: 4683672 doi: 10.1002/bies.201500020
Ohta, S., Wood, L., Bukowski-Wills, J.-C., Rappsilber, J. & Earnshaw, W. C. Building mitotic chromosomes. Curr. Opin. Cell Biol. 23, 114–121 (2011).
pubmed: 20974528 pmcid: 3060342 doi: 10.1016/j.ceb.2010.09.009
Hirano, T. & Kobayashi, R. Condensins, chromosome condensation protein complexes containing XCAP-C, XCAP-E and a Xenopus homolog of the Drosophila Barren protein. Cell 89, 511–521 (1997).
pubmed: 9160743 doi: 10.1016/S0092-8674(00)80233-0
Shintomi, K., Takahashi, T. S. & Hirano, T. Reconstitution of mitotic chromatids with a minimum set of purified factors. Nat. Cell Biol. 17, 1014–1023 (2015).
pubmed: 26075356 doi: 10.1038/ncb3187
Ganji, M. et al. Real-time imaging of DNA loop extrusion by condensin. Science 360, 102–105 (2018).
pubmed: 29472443 pmcid: 6329450 doi: 10.1126/science.aar7831
Gibcus, J. H. et al. A pathway for mitotic chromosome formation. Science 359, eaao6135 (2018).
pubmed: 29348367 pmcid: 5924687 doi: 10.1126/science.aao6135
Yatskevich, S., Rhodes, J. & Nasmyth, K. Organization of chromosomal DNA by SMC complexes. Ann. Rev. Genet. 53, 445–482 (2019).
pubmed: 31577909 doi: 10.1146/annurev-genet-112618-043633
Cimini, D., Mattiuzzo, M., Torosantucci, L. & Degrassi, F. Histone hyperacetylation in mitosis prevents sister chromatid separation and produces chromosome segregation defects. Mol. Biol. Cell 14, 3821–3833 (2003).
pubmed: 12972566 pmcid: 196571 doi: 10.1091/mbc.e03-01-0860
Kruhlak, M. J. et al. Regulation of global acetylation in mitosis through loss of histone acetyltransferases and deacetylases from chromatin. J. Biol. Chem. 276, 38307–38319 (2001).
pubmed: 11479283 doi: 10.1074/jbc.M100290200
Wilkins, B. J. et al. A cascade of histone modifications induces chromatin condensation in mitosis. Science 343, 77–80 (2014).
pubmed: 24385627 doi: 10.1126/science.1244508
Zhiteneva, A. et al. Mitotic post-translational modifications of histones promote chromatin compaction in vitro. Open Biol. 7, 170076 (2017).
pubmed: 28903997 pmcid: 5627050 doi: 10.1098/rsob.170076
Gibson, B. A. et al. Organization of chromatin by intrinsic and regulated phase separation. Cell 179, 470–484 (2019).
pubmed: 31543265 pmcid: 6778041 doi: 10.1016/j.cell.2019.08.037
Gerlich, D., Hirota, T., Koch, B., Peters, J. M. & Ellenberg, J. Condensin I stabilizes chromosomes mechanically through a dynamic interaction in live cells. Curr. Biol. 16, 333–344 (2006).
pubmed: 16488867 doi: 10.1016/j.cub.2005.12.040
Houlard, M. et al. Condensin confers the longitudinal rigidity of chromosomes. Nat. Cell Biol. 17, 771–781 (2015).
pubmed: 25961503 pmcid: 5207317 doi: 10.1038/ncb3167
Sun, M., Biggs, R., Hornick, J. & Marko, J. F. Condensin controls mitotic chromosome stiffness and stability without forming a structurally contiguous scaffold. Chromosome Res. 26, 277–295 (2018).
pubmed: 30143891 pmcid: 6370136 doi: 10.1007/s10577-018-9584-1
Oriola, D., Needleman, D. J. & Brugués, J. The physics of the metaphase spindle. Ann. Rev. Biophys. 47, 655–673 (2018).
doi: 10.1146/annurev-biophys-060414-034107
Monda, J. K. & Cheeseman, I. M. The kinetochore-microtubule interface at a glance. J. Cell Sci. 131, jcs214577 (2018).
pubmed: 30115751 pmcid: 6127730 doi: 10.1242/jcs.214577
Rieder, C. L., Davison, E. A., Jensen, L. C., Cassimeris, L. & Salmon, E. D. Oscillatory movements of monooriented chromosomes and their position relative to the spindle pole result from the ejection properties of the aster and half-spindle. J. Cell Biol. 103, 581–591 (1986).
pubmed: 3733881 doi: 10.1083/jcb.103.2.581
Ault, J. G., DeMarco, A. J., Salmon, E. D. & Rieder, C. L. Studies on the ejection properties of asters: astral microtubule turnover influences the oscillatory behavior and positioning of mono-oriented chromosomes. J. Cell Sci. 99, 701–710 (1991).
pubmed: 1685159 doi: 10.1242/jcs.99.4.701
Rieder, C. L. & Salmon, E. D. Motile kinetochores and polar ejection forces dictate chromosome position on the vertebrate mitotic spindle. J. Cell Biol. 124, 223–233 (1994).
pubmed: 8294508 doi: 10.1083/jcb.124.3.223
Barisic, M., Aguiar, P., Geley, S. & Maiato, H. Kinetochore motors drive congression of peripheral polar chromosomes by overcoming random arm-ejection forces. Nat. Cell Biol. 16, 1249–1256 (2014).
pubmed: 25383660 doi: 10.1038/ncb3060
Maiato, H., Gomes, A. M., Sousa, F. & Barisic, M. Mechanisms of chromosome congression during mitosis. Biology 6, 13 (2017).
pmcid: 5372006 doi: 10.3390/biology6010013
Ginno, P. A., Burger, L., Seebacher, J., Iesmantavicius, V. & Schübeler, D. Cell cycle-resolved chromatin proteomics reveals the extent of mitotic preservation of the genomic regulatory landscape. Nat. Commun. 9, 4012–4048 (2018).
doi: 10.1038/s41467-018-06007-5
Hudson, D. F., Vagnarelli, P., Gassmann, R. & Earnshaw, W. C. Condensin is required for nonhistone protein assembly and structural integrity of vertebrate mitotic chromosomes. Dev. Cell 5, 323–336 (2003).
pubmed: 12919682 doi: 10.1016/S1534-5807(03)00199-0
Samejima, K. et al. Functional analysis after rapid degradation of condensins and 3D-EM reveals chromatin volume is uncoupled from chromosome architecture in mitosis. J. Cell Sci. 131, jcs210187 (2018).
pubmed: 29361541 pmcid: 5868952 doi: 10.1242/jcs.210187
Shin, Y. et al. Liquid nuclear condensates mechanically sense and restructure the genome. Cell 175, 1481–1491 (2018).
pubmed: 30500535 pmcid: 6724728 doi: 10.1016/j.cell.2018.10.057
Ohta, S. et al. The protein composition of mitotic chromosomes determined using multiclassifier combinatorial proteomics. Cell 142, 810–821 (2010).
pubmed: 20813266 pmcid: 2982257 doi: 10.1016/j.cell.2010.07.047
Taddei, A., Roche, D., Bickmore, W. A. & Almouzni, G. The effects of histone deacetylase inhibitors on heterochromatin: implications for anticancer therapy? EMBO Rep. 6, 520–524 (2005).
pubmed: 15940285 pmcid: 1369099 doi: 10.1038/sj.embor.7400441
Booth, D. G. & Earnshaw, W. C. Ki-67 and the chromosome periphery compartment in mitosis. Trends Cell Biol. 27, 906–916 (2017).
pubmed: 28838621 doi: 10.1016/j.tcb.2017.08.001
Cuylen, S. et al. Ki-67 acts as a biological surfactant to disperse mitotic chromosomes. Nature 535, 308–312 (2016).
pubmed: 27362226 pmcid: 4947524 doi: 10.1038/nature18610
Cuylen-Haering, S. et al. Chromosome clustering by Ki-67 excludes cytoplasm during nuclear assembly. Nature 587, 285–290 (2020).
pubmed: 32879492 pmcid: 7666080 doi: 10.1038/s41586-020-2672-3
Bak, A. L., Zeuthen, J. & Crick, F. H. Higher-order structure of human mitotic chromosomes. Proc. Natl Acad. Sci. USA 74, 1595–1599 (1977).
pubmed: 266199 pmcid: 430837 doi: 10.1073/pnas.74.4.1595
Belmont, A. S., Sedat, J. W. & Agard, D. A. A three-dimensional approach to mitotic chromosome structure: evidence for a complex hierarchical organization. J. Cell Biol. 105, 77–92 (1987).
pubmed: 3112167 doi: 10.1083/jcb.105.1.77
Kireeva, N., Lakonishok, M., Kireev, I., Hirano, T. & Belmont, A. S. Visualization of early chromosome condensation: a hierarchical folding, axial glue model of chromosome structure. J. Cell Biol. 166, 775–785 (2004).
pubmed: 15353545 pmcid: 2172117 doi: 10.1083/jcb.200406049
Marko, J. F. & Siggia, E. D. Polymer models of meiotic and mitotic chromosomes. Mol. Biol. Cell 8, 2217–2231 (1997).
pubmed: 9362064 pmcid: 25703 doi: 10.1091/mbc.8.11.2217
Poirier, M. G. & Marko, J. F. Mitotic chromosomes are chromatin networks without a mechanically contiguous protein scaffold. Proc. Natl Acad. Sci. USA 99, 15393–15397 (2002).
pubmed: 12438695 pmcid: 137727 doi: 10.1073/pnas.232442599
Poirier, M. G., Monhait, T. & Marko, J. F. Reversible hypercondensation and decondensation of mitotic chromosomes studied using combined chemical–micromechanical techniques. J. Cell. Biochem. 85, 422–434 (2002).
pubmed: 11948697 doi: 10.1002/jcb.10132
Cuylen, S., Metz, J. & Haering, C. H. Condensin structures chromosomal DNA through topological links. Nat. Struct. Mol. Biol. 18, 894–901 (2011).
pubmed: 21765419 doi: 10.1038/nsmb.2087
Beel, A. J., Matteï, P.-J. & Kornberg, R. D. Mitotic chromosome condensation driven by a volume phase transition. Preprint at bioRxiv https://doi.org/10.1101/2021.07.30.454418 (2021).
Wall, M. A., Socolich, M. & Ranganathan, R. The structural basis for red fluorescence in the tetrameric GFP homolog DsRed. Nat. Struct. Biol. 7, 1133–1138 (2000).
pubmed: 11101896 doi: 10.1038/81992
Gebala, M., Johnson, S. L., Narlikar, G. J. & Herschlag, D. Ion counting demonstrates a high electrostatic field generated by the nucleosome. eLife 8, e44993 (2019).
pubmed: 31184587 pmcid: 6584128 doi: 10.7554/eLife.44993
Thompson, D. B., Cronican, J. J. & Liu, D. R. Engineering and identifying supercharged proteins for macromolecule delivery into mammalian cells. Methods Enzymol. 503, 293–319 (2012).
pubmed: 22230574 pmcid: 3505079 doi: 10.1016/B978-0-12-396962-0.00012-4
Dogterom, M. & Yurke, B. Measurement of the force-velocity relation for growing microtubules. Science 278, 856–860 (1997).
pubmed: 9346483 doi: 10.1126/science.278.5339.856
Levesque, A. A. & Compton, D. A. The chromokinesin Kid is necessary for chromosome arm orientation and oscillation, but not congression, on mitotic spindles. J. Cell Biol. 154, 1135–1146 (2001).
pubmed: 11564754 pmcid: 2150818 doi: 10.1083/jcb.200106093
Brouhard, G. J. & Hunt, A. J. Microtubule movements on the arms of mitotic chromosomes: polar ejection forces quantified in vitro. Proc. Natl Acad. Sci. USA 102, 13903–13908 (2005).
pubmed: 16174726 pmcid: 1236563 doi: 10.1073/pnas.0506017102
Wandke, C. et al. Human chromokinesins promote chromosome congression and spindle microtubule dynamics during mitosis. J. Cell Biol. 198, 847–863 (2012).
pubmed: 22945934 pmcid: 3432768 doi: 10.1083/jcb.201110060
Almeida, A. C. & Maiato, H. Chromokinesins. Curr. Biol. 28, R1131–R1135 (2018).
pubmed: 30300593 pmcid: 6402541 doi: 10.1016/j.cub.2018.07.017
Walther, N. et al. A quantitative map of human condensins provides new insights into mitotic chromosome architecture. J. Cell Biol. 217, 2309–2328 (2018).
pubmed: 29632028 pmcid: 6028534 doi: 10.1083/jcb.201801048
Woodruff, J. B. et al. The centrosome is a selective condensate that nucleates microtubules by concentrating tubulin. Cell 169, 1066–1077 (2017).
pubmed: 28575670 doi: 10.1016/j.cell.2017.05.028
Schmitz, M. H. A. et al. Live-cell imaging RNAi screen identifies PP2A-B55α and importin-β 21 as key mitotic exit regulators in human cells. Nat. Cell Biol. 12, 886–893 (2010).
pubmed: 20711181 doi: 10.1038/ncb2092
Lukinavičius, G. et al. Fluorogenic probes for live-cell imaging of the cytoskeleton. Nat. Methods 11, 731–733 (2014).
pubmed: 24859753 doi: 10.1038/nmeth.2972
Kim, Y. E., Chen, J., Chan, J. R. & Langen, R. Engineering a polarity-sensitive biosensor for time-lapse imaging of apoptotic processes and degeneration. Nat. Methods 7, 67–73 (2010).
pubmed: 19966809 doi: 10.1038/nmeth.1405
Samwer, M. et al. DNA cross-bridging shapes a single nucleus from a set of mitotic chromosomes. Cell 170, 956–972 (2017).
pubmed: 28841419 pmcid: 5638020 doi: 10.1016/j.cell.2017.07.038
Gutschner, T., Haemmerle, M., Genovese, G., Draetta, G. F. & Chin, L. Post-translational regulation of Cas9 during G1 enhances homology-directed repair. Cell Rep. 14, 1555–1566 (2016).
pubmed: 26854237 doi: 10.1016/j.celrep.2016.01.019
Yesbolatova, A. et al. The auxin-inducible degron 2 technology provides sharp degradation control in yeast, mammalian cells, and mice. Nat. Commun. 11, 5701 (2020).
pubmed: 33177522 pmcid: 7659001 doi: 10.1038/s41467-020-19532-z
Li, S., Prasanna, X., Salo, V. T., Vattulainen, I. & Ikonen, E. An efficient auxin-inducible degron system with low basal degradation in human cells. Nat. Methods 16, 866–869 (2019).
pubmed: 31451765 doi: 10.1038/s41592-019-0512-x
Yoshida, M., Kijima, M., Akita, M. & Beppu, T. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J. Biol. Chem. 265, 17174–17179 (1990).
pubmed: 2211619 doi: 10.1016/S0021-9258(17)44885-X
Skoufias, D. A. et al. S-Trityl-L-cysteine is a reversible, tight binding inhibitor of the human kinesin Eg5 that specifically blocks mitotic progression. J. Biol. Chem. 281, 17559–17569 (2006).
pubmed: 16507573 doi: 10.1074/jbc.M511735200
Vassilev, L. T. et al. Selective small-molecule inhibitor reveals critical mitotic functions of human CDK1. Proc. Natl Acad. Sci. USA 103, 10660–10665 (2006).
pubmed: 16818887 pmcid: 1502288 doi: 10.1073/pnas.0600447103
Dixit, R. & Ross, J. L. Studying plus-end tracking at single molecule resolution using TIRF microscopy. Methods Cell Biol. 95, 543–554 (2010).
Field, C. M., Pelletier, J. F. & Mitchison, T. J. Xenopus extract approaches to studying microtubule organization and signaling in cytokinesis. Methods Cell Biol. 137, 395–435 (2017).
Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).
pubmed: 16182563 doi: 10.1016/j.jsb.2005.07.007
Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).
pubmed: 8742726 doi: 10.1006/jsbi.1996.0013
Bancaud, A., Huet, S., Rabut, G. & Ellenberg, J. Fluorescence perturbation techniques to study mobility and molecular dynamics of proteins in live cells: FRAP, photoactivation, photoconversion, and FLIP. Cold Spring Harb. Protoc. 2010, 1303–1324 (2010).
doi: 10.1101/pdb.top90
Fuller, B. G. et al. Midzone activation of aurora B in anaphase produces an intracellular phosphorylation gradient. Nature 453, 1132–1136 (2008).
pubmed: 18463638 pmcid: 2724008 doi: 10.1038/nature06923

Auteurs

Maximilian W G Schneider (MWG)

Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria. maximilian.schneider@imba.oeaw.ac.at.
Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria. maximilian.schneider@imba.oeaw.ac.at.

Bryan A Gibson (BA)

Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, USA.

Shotaro Otsuka (S)

Max Perutz Labs, a joint venture of the University of Vienna and the Medical University of Vienna, Vienna BioCenter, Vienna, Austria.

Maximilian F D Spicer (MFD)

Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria.
Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria.

Mina Petrovic (M)

Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria.
Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria.

Claudia Blaukopf (C)

Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria.

Christoph C H Langer (CCH)

Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria.

Paul Batty (P)

Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria.
Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria.

Thejaswi Nagaraju (T)

Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria.

Lynda K Doolittle (LK)

Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, USA.

Michael K Rosen (MK)

Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, USA.

Daniel W Gerlich (DW)

Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria. daniel.gerlich@imba.oeaw.ac.at.

Articles similaires

Schizosaccharomyces Meiosis Schizosaccharomyces pombe Proteins Mitosis Epigenesis, Genetic
DNA Methylation Humans DNA Animals Machine Learning
DNA Glycosylases Nucleosomes Humans 8-Hydroxy-2'-Deoxyguanosine DNA Repair
Alleles Benchmarking Transcription Factors Humans Chromatin Immunoprecipitation Sequencing

Classifications MeSH