A mitotic chromatin phase transition prevents perforation by microtubules.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
09 2022
09 2022
Historique:
received:
02
07
2021
accepted:
27
06
2022
pubmed:
4
8
2022
medline:
9
9
2022
entrez:
3
8
2022
Statut:
ppublish
Résumé
Dividing eukaryotic cells package extremely long chromosomal DNA molecules into discrete bodies to enable microtubule-mediated transport of one genome copy to each of the newly forming daughter cells
Identifiants
pubmed: 35922507
doi: 10.1038/s41586-022-05027-y
pii: 10.1038/s41586-022-05027-y
pmc: PMC9433320
mid: EMS153637
doi:
Substances chimiques
Chromatin
0
Histones
0
DNA
9007-49-2
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
183-190Subventions
Organisme : European Research Council
ID : 101019039
Pays : International
Organisme : NIGMS NIH HHS
ID : F32 GM129925
Pays : United States
Organisme : Austrian Science Fund FWF
ID : W 1238
Pays : Austria
Organisme : Howard Hughes Medical Institute
Pays : United States
Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2022. The Author(s).
Références
Batty, P. & Gerlich, D. W. Mitotic chromosome mechanics: how cells segregate their genome. Trends Cell Biol. 29, 717–726 (2019).
pubmed: 31230958
doi: 10.1016/j.tcb.2019.05.007
Kschonsak, M. & Haering, C. H. Shaping mitotic chromosomes: from classical concepts to molecular mechanisms. BioEssays 37, 755–766 (2015).
pubmed: 25988527
pmcid: 4683672
doi: 10.1002/bies.201500020
Ohta, S., Wood, L., Bukowski-Wills, J.-C., Rappsilber, J. & Earnshaw, W. C. Building mitotic chromosomes. Curr. Opin. Cell Biol. 23, 114–121 (2011).
pubmed: 20974528
pmcid: 3060342
doi: 10.1016/j.ceb.2010.09.009
Hirano, T. & Kobayashi, R. Condensins, chromosome condensation protein complexes containing XCAP-C, XCAP-E and a Xenopus homolog of the Drosophila Barren protein. Cell 89, 511–521 (1997).
pubmed: 9160743
doi: 10.1016/S0092-8674(00)80233-0
Shintomi, K., Takahashi, T. S. & Hirano, T. Reconstitution of mitotic chromatids with a minimum set of purified factors. Nat. Cell Biol. 17, 1014–1023 (2015).
pubmed: 26075356
doi: 10.1038/ncb3187
Ganji, M. et al. Real-time imaging of DNA loop extrusion by condensin. Science 360, 102–105 (2018).
pubmed: 29472443
pmcid: 6329450
doi: 10.1126/science.aar7831
Gibcus, J. H. et al. A pathway for mitotic chromosome formation. Science 359, eaao6135 (2018).
pubmed: 29348367
pmcid: 5924687
doi: 10.1126/science.aao6135
Yatskevich, S., Rhodes, J. & Nasmyth, K. Organization of chromosomal DNA by SMC complexes. Ann. Rev. Genet. 53, 445–482 (2019).
pubmed: 31577909
doi: 10.1146/annurev-genet-112618-043633
Cimini, D., Mattiuzzo, M., Torosantucci, L. & Degrassi, F. Histone hyperacetylation in mitosis prevents sister chromatid separation and produces chromosome segregation defects. Mol. Biol. Cell 14, 3821–3833 (2003).
pubmed: 12972566
pmcid: 196571
doi: 10.1091/mbc.e03-01-0860
Kruhlak, M. J. et al. Regulation of global acetylation in mitosis through loss of histone acetyltransferases and deacetylases from chromatin. J. Biol. Chem. 276, 38307–38319 (2001).
pubmed: 11479283
doi: 10.1074/jbc.M100290200
Wilkins, B. J. et al. A cascade of histone modifications induces chromatin condensation in mitosis. Science 343, 77–80 (2014).
pubmed: 24385627
doi: 10.1126/science.1244508
Zhiteneva, A. et al. Mitotic post-translational modifications of histones promote chromatin compaction in vitro. Open Biol. 7, 170076 (2017).
pubmed: 28903997
pmcid: 5627050
doi: 10.1098/rsob.170076
Gibson, B. A. et al. Organization of chromatin by intrinsic and regulated phase separation. Cell 179, 470–484 (2019).
pubmed: 31543265
pmcid: 6778041
doi: 10.1016/j.cell.2019.08.037
Gerlich, D., Hirota, T., Koch, B., Peters, J. M. & Ellenberg, J. Condensin I stabilizes chromosomes mechanically through a dynamic interaction in live cells. Curr. Biol. 16, 333–344 (2006).
pubmed: 16488867
doi: 10.1016/j.cub.2005.12.040
Houlard, M. et al. Condensin confers the longitudinal rigidity of chromosomes. Nat. Cell Biol. 17, 771–781 (2015).
pubmed: 25961503
pmcid: 5207317
doi: 10.1038/ncb3167
Sun, M., Biggs, R., Hornick, J. & Marko, J. F. Condensin controls mitotic chromosome stiffness and stability without forming a structurally contiguous scaffold. Chromosome Res. 26, 277–295 (2018).
pubmed: 30143891
pmcid: 6370136
doi: 10.1007/s10577-018-9584-1
Oriola, D., Needleman, D. J. & Brugués, J. The physics of the metaphase spindle. Ann. Rev. Biophys. 47, 655–673 (2018).
doi: 10.1146/annurev-biophys-060414-034107
Monda, J. K. & Cheeseman, I. M. The kinetochore-microtubule interface at a glance. J. Cell Sci. 131, jcs214577 (2018).
pubmed: 30115751
pmcid: 6127730
doi: 10.1242/jcs.214577
Rieder, C. L., Davison, E. A., Jensen, L. C., Cassimeris, L. & Salmon, E. D. Oscillatory movements of monooriented chromosomes and their position relative to the spindle pole result from the ejection properties of the aster and half-spindle. J. Cell Biol. 103, 581–591 (1986).
pubmed: 3733881
doi: 10.1083/jcb.103.2.581
Ault, J. G., DeMarco, A. J., Salmon, E. D. & Rieder, C. L. Studies on the ejection properties of asters: astral microtubule turnover influences the oscillatory behavior and positioning of mono-oriented chromosomes. J. Cell Sci. 99, 701–710 (1991).
pubmed: 1685159
doi: 10.1242/jcs.99.4.701
Rieder, C. L. & Salmon, E. D. Motile kinetochores and polar ejection forces dictate chromosome position on the vertebrate mitotic spindle. J. Cell Biol. 124, 223–233 (1994).
pubmed: 8294508
doi: 10.1083/jcb.124.3.223
Barisic, M., Aguiar, P., Geley, S. & Maiato, H. Kinetochore motors drive congression of peripheral polar chromosomes by overcoming random arm-ejection forces. Nat. Cell Biol. 16, 1249–1256 (2014).
pubmed: 25383660
doi: 10.1038/ncb3060
Maiato, H., Gomes, A. M., Sousa, F. & Barisic, M. Mechanisms of chromosome congression during mitosis. Biology 6, 13 (2017).
pmcid: 5372006
doi: 10.3390/biology6010013
Ginno, P. A., Burger, L., Seebacher, J., Iesmantavicius, V. & Schübeler, D. Cell cycle-resolved chromatin proteomics reveals the extent of mitotic preservation of the genomic regulatory landscape. Nat. Commun. 9, 4012–4048 (2018).
doi: 10.1038/s41467-018-06007-5
Hudson, D. F., Vagnarelli, P., Gassmann, R. & Earnshaw, W. C. Condensin is required for nonhistone protein assembly and structural integrity of vertebrate mitotic chromosomes. Dev. Cell 5, 323–336 (2003).
pubmed: 12919682
doi: 10.1016/S1534-5807(03)00199-0
Samejima, K. et al. Functional analysis after rapid degradation of condensins and 3D-EM reveals chromatin volume is uncoupled from chromosome architecture in mitosis. J. Cell Sci. 131, jcs210187 (2018).
pubmed: 29361541
pmcid: 5868952
doi: 10.1242/jcs.210187
Shin, Y. et al. Liquid nuclear condensates mechanically sense and restructure the genome. Cell 175, 1481–1491 (2018).
pubmed: 30500535
pmcid: 6724728
doi: 10.1016/j.cell.2018.10.057
Ohta, S. et al. The protein composition of mitotic chromosomes determined using multiclassifier combinatorial proteomics. Cell 142, 810–821 (2010).
pubmed: 20813266
pmcid: 2982257
doi: 10.1016/j.cell.2010.07.047
Taddei, A., Roche, D., Bickmore, W. A. & Almouzni, G. The effects of histone deacetylase inhibitors on heterochromatin: implications for anticancer therapy? EMBO Rep. 6, 520–524 (2005).
pubmed: 15940285
pmcid: 1369099
doi: 10.1038/sj.embor.7400441
Booth, D. G. & Earnshaw, W. C. Ki-67 and the chromosome periphery compartment in mitosis. Trends Cell Biol. 27, 906–916 (2017).
pubmed: 28838621
doi: 10.1016/j.tcb.2017.08.001
Cuylen, S. et al. Ki-67 acts as a biological surfactant to disperse mitotic chromosomes. Nature 535, 308–312 (2016).
pubmed: 27362226
pmcid: 4947524
doi: 10.1038/nature18610
Cuylen-Haering, S. et al. Chromosome clustering by Ki-67 excludes cytoplasm during nuclear assembly. Nature 587, 285–290 (2020).
pubmed: 32879492
pmcid: 7666080
doi: 10.1038/s41586-020-2672-3
Bak, A. L., Zeuthen, J. & Crick, F. H. Higher-order structure of human mitotic chromosomes. Proc. Natl Acad. Sci. USA 74, 1595–1599 (1977).
pubmed: 266199
pmcid: 430837
doi: 10.1073/pnas.74.4.1595
Belmont, A. S., Sedat, J. W. & Agard, D. A. A three-dimensional approach to mitotic chromosome structure: evidence for a complex hierarchical organization. J. Cell Biol. 105, 77–92 (1987).
pubmed: 3112167
doi: 10.1083/jcb.105.1.77
Kireeva, N., Lakonishok, M., Kireev, I., Hirano, T. & Belmont, A. S. Visualization of early chromosome condensation: a hierarchical folding, axial glue model of chromosome structure. J. Cell Biol. 166, 775–785 (2004).
pubmed: 15353545
pmcid: 2172117
doi: 10.1083/jcb.200406049
Marko, J. F. & Siggia, E. D. Polymer models of meiotic and mitotic chromosomes. Mol. Biol. Cell 8, 2217–2231 (1997).
pubmed: 9362064
pmcid: 25703
doi: 10.1091/mbc.8.11.2217
Poirier, M. G. & Marko, J. F. Mitotic chromosomes are chromatin networks without a mechanically contiguous protein scaffold. Proc. Natl Acad. Sci. USA 99, 15393–15397 (2002).
pubmed: 12438695
pmcid: 137727
doi: 10.1073/pnas.232442599
Poirier, M. G., Monhait, T. & Marko, J. F. Reversible hypercondensation and decondensation of mitotic chromosomes studied using combined chemical–micromechanical techniques. J. Cell. Biochem. 85, 422–434 (2002).
pubmed: 11948697
doi: 10.1002/jcb.10132
Cuylen, S., Metz, J. & Haering, C. H. Condensin structures chromosomal DNA through topological links. Nat. Struct. Mol. Biol. 18, 894–901 (2011).
pubmed: 21765419
doi: 10.1038/nsmb.2087
Beel, A. J., Matteï, P.-J. & Kornberg, R. D. Mitotic chromosome condensation driven by a volume phase transition. Preprint at bioRxiv https://doi.org/10.1101/2021.07.30.454418 (2021).
Wall, M. A., Socolich, M. & Ranganathan, R. The structural basis for red fluorescence in the tetrameric GFP homolog DsRed. Nat. Struct. Biol. 7, 1133–1138 (2000).
pubmed: 11101896
doi: 10.1038/81992
Gebala, M., Johnson, S. L., Narlikar, G. J. & Herschlag, D. Ion counting demonstrates a high electrostatic field generated by the nucleosome. eLife 8, e44993 (2019).
pubmed: 31184587
pmcid: 6584128
doi: 10.7554/eLife.44993
Thompson, D. B., Cronican, J. J. & Liu, D. R. Engineering and identifying supercharged proteins for macromolecule delivery into mammalian cells. Methods Enzymol. 503, 293–319 (2012).
pubmed: 22230574
pmcid: 3505079
doi: 10.1016/B978-0-12-396962-0.00012-4
Dogterom, M. & Yurke, B. Measurement of the force-velocity relation for growing microtubules. Science 278, 856–860 (1997).
pubmed: 9346483
doi: 10.1126/science.278.5339.856
Levesque, A. A. & Compton, D. A. The chromokinesin Kid is necessary for chromosome arm orientation and oscillation, but not congression, on mitotic spindles. J. Cell Biol. 154, 1135–1146 (2001).
pubmed: 11564754
pmcid: 2150818
doi: 10.1083/jcb.200106093
Brouhard, G. J. & Hunt, A. J. Microtubule movements on the arms of mitotic chromosomes: polar ejection forces quantified in vitro. Proc. Natl Acad. Sci. USA 102, 13903–13908 (2005).
pubmed: 16174726
pmcid: 1236563
doi: 10.1073/pnas.0506017102
Wandke, C. et al. Human chromokinesins promote chromosome congression and spindle microtubule dynamics during mitosis. J. Cell Biol. 198, 847–863 (2012).
pubmed: 22945934
pmcid: 3432768
doi: 10.1083/jcb.201110060
Almeida, A. C. & Maiato, H. Chromokinesins. Curr. Biol. 28, R1131–R1135 (2018).
pubmed: 30300593
pmcid: 6402541
doi: 10.1016/j.cub.2018.07.017
Walther, N. et al. A quantitative map of human condensins provides new insights into mitotic chromosome architecture. J. Cell Biol. 217, 2309–2328 (2018).
pubmed: 29632028
pmcid: 6028534
doi: 10.1083/jcb.201801048
Woodruff, J. B. et al. The centrosome is a selective condensate that nucleates microtubules by concentrating tubulin. Cell 169, 1066–1077 (2017).
pubmed: 28575670
doi: 10.1016/j.cell.2017.05.028
Schmitz, M. H. A. et al. Live-cell imaging RNAi screen identifies PP2A-B55α and importin-β 21 as key mitotic exit regulators in human cells. Nat. Cell Biol. 12, 886–893 (2010).
pubmed: 20711181
doi: 10.1038/ncb2092
Lukinavičius, G. et al. Fluorogenic probes for live-cell imaging of the cytoskeleton. Nat. Methods 11, 731–733 (2014).
pubmed: 24859753
doi: 10.1038/nmeth.2972
Kim, Y. E., Chen, J., Chan, J. R. & Langen, R. Engineering a polarity-sensitive biosensor for time-lapse imaging of apoptotic processes and degeneration. Nat. Methods 7, 67–73 (2010).
pubmed: 19966809
doi: 10.1038/nmeth.1405
Samwer, M. et al. DNA cross-bridging shapes a single nucleus from a set of mitotic chromosomes. Cell 170, 956–972 (2017).
pubmed: 28841419
pmcid: 5638020
doi: 10.1016/j.cell.2017.07.038
Gutschner, T., Haemmerle, M., Genovese, G., Draetta, G. F. & Chin, L. Post-translational regulation of Cas9 during G1 enhances homology-directed repair. Cell Rep. 14, 1555–1566 (2016).
pubmed: 26854237
doi: 10.1016/j.celrep.2016.01.019
Yesbolatova, A. et al. The auxin-inducible degron 2 technology provides sharp degradation control in yeast, mammalian cells, and mice. Nat. Commun. 11, 5701 (2020).
pubmed: 33177522
pmcid: 7659001
doi: 10.1038/s41467-020-19532-z
Li, S., Prasanna, X., Salo, V. T., Vattulainen, I. & Ikonen, E. An efficient auxin-inducible degron system with low basal degradation in human cells. Nat. Methods 16, 866–869 (2019).
pubmed: 31451765
doi: 10.1038/s41592-019-0512-x
Yoshida, M., Kijima, M., Akita, M. & Beppu, T. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J. Biol. Chem. 265, 17174–17179 (1990).
pubmed: 2211619
doi: 10.1016/S0021-9258(17)44885-X
Skoufias, D. A. et al. S-Trityl-L-cysteine is a reversible, tight binding inhibitor of the human kinesin Eg5 that specifically blocks mitotic progression. J. Biol. Chem. 281, 17559–17569 (2006).
pubmed: 16507573
doi: 10.1074/jbc.M511735200
Vassilev, L. T. et al. Selective small-molecule inhibitor reveals critical mitotic functions of human CDK1. Proc. Natl Acad. Sci. USA 103, 10660–10665 (2006).
pubmed: 16818887
pmcid: 1502288
doi: 10.1073/pnas.0600447103
Dixit, R. & Ross, J. L. Studying plus-end tracking at single molecule resolution using TIRF microscopy. Methods Cell Biol. 95, 543–554 (2010).
Field, C. M., Pelletier, J. F. & Mitchison, T. J. Xenopus extract approaches to studying microtubule organization and signaling in cytokinesis. Methods Cell Biol. 137, 395–435 (2017).
Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).
pubmed: 16182563
doi: 10.1016/j.jsb.2005.07.007
Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).
pubmed: 8742726
doi: 10.1006/jsbi.1996.0013
Bancaud, A., Huet, S., Rabut, G. & Ellenberg, J. Fluorescence perturbation techniques to study mobility and molecular dynamics of proteins in live cells: FRAP, photoactivation, photoconversion, and FLIP. Cold Spring Harb. Protoc. 2010, 1303–1324 (2010).
doi: 10.1101/pdb.top90
Fuller, B. G. et al. Midzone activation of aurora B in anaphase produces an intracellular phosphorylation gradient. Nature 453, 1132–1136 (2008).
pubmed: 18463638
pmcid: 2724008
doi: 10.1038/nature06923