Cost-benefit analysis of mesophyll conductance: diversities of anatomical, biochemical and environmental determinants.

Aquaporin cooporin leaf construction cost leaf maintenance cost leaf mass per area mesophyll conductance

Journal

Annals of botany
ISSN: 1095-8290
Titre abrégé: Ann Bot
Pays: England
ID NLM: 0372347

Informations de publication

Date de publication:
19 09 2022
Historique:
received: 05 04 2022
accepted: 08 08 2022
pubmed: 11 8 2022
medline: 23 9 2022
entrez: 10 8 2022
Statut: ppublish

Résumé

Plants invest photosynthates in construction and maintenance of their structures and functions. Such investments are considered costs. These costs are recovered by the CO2 assimilation rate (A) in the leaves, and thus A is regarded as the immediate, short-term benefit. In photosynthesizing leaves, CO2 diffusion from the air to the carboxylation site is hindered by several structural and biochemical barriers. CO2 diffusion from the intercellular air space to the chloroplast stroma is obstructed by the mesophyll resistance. The inverses is the mesophyll conductance (gm). Whether various plants realize an optimal gm, and how much investment is needed for a relevant gm, remain unsolved. This review examines relationships among leaf construction costs (CC), leaf maintenance costs (MC) and gm in various plants under diverse growth conditions. Through a literature survey, we demonstrate a strong linear relationship between leaf mass per area (LMA) and leaf CC. The overall correlation of CC vs. gm across plant phylogenetic groups is weak, but significant trends are evident within specific groups and/or environments. Investment in CC is necessary for an increase in LMA and mesophyll cell surface area (Smes). This allows the leaf to accommodate more chloroplasts, thus increasing A. However, increases in LMA and/or Smes often accompany other changes, such as cell wall thickening, which diminishes gm. Such factors that make the correlations of CC and gm elusive are identified. For evaluation of the contribution of gm to recover CC, leaf life span is the key factor. The estimation of MC in relation to gm, especially in terms of costs required to regulate aquaporins, could be essential for efficient control of gm over the short term. Over the long term, costs are mainly reflected in CC, while benefits also include ultimate fitness attributes in terms of integrated carbon gain over the life of a leaf, plant survival and reproductive output.

Sections du résumé

BACKGROUND
Plants invest photosynthates in construction and maintenance of their structures and functions. Such investments are considered costs. These costs are recovered by the CO2 assimilation rate (A) in the leaves, and thus A is regarded as the immediate, short-term benefit. In photosynthesizing leaves, CO2 diffusion from the air to the carboxylation site is hindered by several structural and biochemical barriers. CO2 diffusion from the intercellular air space to the chloroplast stroma is obstructed by the mesophyll resistance. The inverses is the mesophyll conductance (gm). Whether various plants realize an optimal gm, and how much investment is needed for a relevant gm, remain unsolved.
SCOPE
This review examines relationships among leaf construction costs (CC), leaf maintenance costs (MC) and gm in various plants under diverse growth conditions. Through a literature survey, we demonstrate a strong linear relationship between leaf mass per area (LMA) and leaf CC. The overall correlation of CC vs. gm across plant phylogenetic groups is weak, but significant trends are evident within specific groups and/or environments. Investment in CC is necessary for an increase in LMA and mesophyll cell surface area (Smes). This allows the leaf to accommodate more chloroplasts, thus increasing A. However, increases in LMA and/or Smes often accompany other changes, such as cell wall thickening, which diminishes gm. Such factors that make the correlations of CC and gm elusive are identified.
CONCLUSIONS
For evaluation of the contribution of gm to recover CC, leaf life span is the key factor. The estimation of MC in relation to gm, especially in terms of costs required to regulate aquaporins, could be essential for efficient control of gm over the short term. Over the long term, costs are mainly reflected in CC, while benefits also include ultimate fitness attributes in terms of integrated carbon gain over the life of a leaf, plant survival and reproductive output.

Identifiants

pubmed: 35947983
pii: 6659953
doi: 10.1093/aob/mcac100
pmc: PMC9487971
doi:

Substances chimiques

Carbon Dioxide 142M471B3J
Carbon 7440-44-0

Types de publication

Journal Article Review Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

265-283

Informations de copyright

© The Author(s) 2022. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

Références

J Exp Bot. 2017 Mar 1;68(7):1639-1653
pubmed: 28419340
Plant Cell. 1996 Jul;8(7):1181-91
pubmed: 8768376
Plant Physiol. 2007 Jan;143(1):68-77
pubmed: 17098853
J Exp Bot. 2006;57(12):3195-207
pubmed: 16945981
Plant J. 2020 Feb;101(4):979-1000
pubmed: 31953876
Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13730-4
pubmed: 9391094
Ecol Appl. 2007 Oct;17(7):1982-8
pubmed: 17974336
Tree Physiol. 2002 Aug;22(12):859-67
pubmed: 12184975
J Exp Bot. 2013 May;64(8):2269-81
pubmed: 23564954
PLoS One. 2016 Mar 08;11(3):e0150644
pubmed: 26953884
Protoplasma. 2022 Jun 8;:
pubmed: 35676506
Plant Cell Environ. 2010 Mar;33(3):332-43
pubmed: 19895395
Ann Bot. 2022 Sep 19;130(3):301-316
pubmed: 35896037
Plant Cell Physiol. 2015 May;56(5):875-82
pubmed: 25634964
Plant Cell Environ. 2008 May;31(5):602-21
pubmed: 17996013
New Phytol. 2021 Jun;230(5):1802-1814
pubmed: 33605441
J Plant Physiol. 2020 Jan;244:153084
pubmed: 31812907
Funct Plant Biol. 2008 Sep;35(7):553-564
pubmed: 32688811
Plant Cell Environ. 2015 Mar;38(3):448-60
pubmed: 24995519
Plant Physiol. 2020 Aug;183(4):1600-1611
pubmed: 32518201
J Exp Bot. 2006;57(2):343-54
pubmed: 16356943
Funct Plant Biol. 2003 Jan;30(12):1197-1204
pubmed: 32689101
Plant Cell Environ. 2013 May;36(5):920-35
pubmed: 23057729
Hortic Res. 2019 Sep 11;6:104
pubmed: 31645959
Plant Cell Environ. 2012 May;35(5):839-56
pubmed: 22070625
New Phytol. 2019 May;222(3):1256-1270
pubmed: 30623444
J Exp Bot. 2019 Jan 7;70(2):671-681
pubmed: 30535321
Biol Proced Online. 2009 May 15;11:32-51
pubmed: 19495910
New Phytol. 2017 Jun;214(4):1447-1463
pubmed: 28295374
Plant Mol Biol. 1994 Jun;25(3):377-85
pubmed: 8049364
New Phytol. 2017 Jan;213(2):572-583
pubmed: 27653809
Plant Physiol. 2021 Feb 25;185(1):146-160
pubmed: 33631811
New Phytol. 2007;175(1):81-93
pubmed: 17547669
Biol Res. 2018 Jan 16;51(1):4
pubmed: 29338771
J Exp Bot. 2013 Oct;64(13):3965-81
pubmed: 24123453
J Exp Bot. 2009;60(8):2235-48
pubmed: 19395390
Front Plant Sci. 2021 May 28;12:666066
pubmed: 34168667
Front Plant Sci. 2019 Mar 06;10:225
pubmed: 30894867
Physiol Plant. 2016 Jun;157(2):234-54
pubmed: 26806194
Proc Natl Acad Sci U S A. 2021 Aug 17;118(33):
pubmed: 34380739
Tree Physiol. 2020 Sep 12;:
pubmed: 32918811
Plant Cell Environ. 2014 Nov;37(11):2587-600
pubmed: 24689501
J Exp Bot. 2021 Oct 26;72(20):7191-7202
pubmed: 34232298
Plant Cell Environ. 2018 Feb;41(2):436-450
pubmed: 29220546
Plant Physiol. 2007 Aug;144(4):1890-8
pubmed: 17556506
Am Nat. 2003 Jan;161(1):98-111
pubmed: 12650465
Mol Plant. 2017 Jan 9;10(1):30-46
pubmed: 27646307
Plant Cell Physiol. 2014 Feb;55(2):251-7
pubmed: 24406630
Plant J. 2019 Nov;100(4):738-753
pubmed: 31350790
Plant Cell Environ. 2019 Apr;42(4):1257-1269
pubmed: 30468514
Philos Trans R Soc Lond B Biol Sci. 2012 Feb 19;367(1588):547-55
pubmed: 22232766
New Phytol. 2021 Feb;229(4):1864-1876
pubmed: 33135193
Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48:609-639
pubmed: 15012276
J Exp Bot. 2008;59(12):3317-25
pubmed: 18648104
Plant Physiol. 1996 Feb;110(2):339-346
pubmed: 12226185
Plant Cell. 2015 Jul;27(7):1945-54
pubmed: 26163575
J Exp Bot. 2002 Dec;53(379):2423-30
pubmed: 12432034
Plant Physiol. 2011 Jan;155(1):108-16
pubmed: 21075960
Nat Plants. 2020 Sep;6(9):1116-1125
pubmed: 32895529
Plant Cell Environ. 2013 Nov;36(11):1961-80
pubmed: 23527762
Sci Rep. 2020 Jun 22;10(1):10038
pubmed: 32572068
Plant J. 2019 Sep;99(6):1031-1046
pubmed: 31215089
Int J Mol Sci. 2018 Jan 15;19(1):
pubmed: 29342938
J Exp Bot. 2022 Jun 2;73(11):3625-3636
pubmed: 35184158
Plant Cell Environ. 2007 May;30(5):617-29
pubmed: 17407539
Plant Cell Environ. 2015 Dec;38(12):2541-50
pubmed: 25923314
Biophys J. 2000 Dec;79(6):3172-92
pubmed: 11106622
J Exp Bot. 2016 Jan;67(2):463-76
pubmed: 26608646
Plant Physiol. 1986 Nov;82(3):807-12
pubmed: 16665114
J Gen Physiol. 1977 Jun;69(6):779-94
pubmed: 408462
Ann Bot. 2022 Sep 19;130(3):285-300
pubmed: 35452520
Curr Opin Plant Biol. 2010 Jun;13(3):233-40
pubmed: 20552724
J Plant Physiol. 2013 Jun 15;170(9):801-13
pubmed: 23384758
J Exp Bot. 2019 Sep 24;70(18):4807-4818
pubmed: 31056658
J Struct Biol. 2007 Mar;157(3):534-44
pubmed: 17306562
Plant Cell. 2008 Mar;20(3):648-57
pubmed: 18349152
J Biol Chem. 2004 Aug 27;279(35):36277-86
pubmed: 15190066
Plant J. 2020 Aug;103(4):1372-1385
pubmed: 32390169
Biochemistry. 1978 Mar 21;17(6):1119-25
pubmed: 415758
Plant Cell Environ. 2015 Mar;38(3):388-98
pubmed: 24995523
Plant J. 2006 Nov;48(3):427-39
pubmed: 17010114
New Phytol. 2017 Apr;214(2):585-596
pubmed: 28058722
Metabolites. 2019 Apr 16;9(4):
pubmed: 30995746
Trends Ecol Evol. 1996 Dec;11(12):494-7
pubmed: 21237936
Ecology. 2011 Aug;92(8):1616-25
pubmed: 21905428
Proc Natl Acad Sci U S A. 2008 Feb 5;105(5):1567-72
pubmed: 18227511
Plant Cell Physiol. 2001 Dec;42(12):1303-10
pubmed: 11773522
Physiol Plant. 2021 Aug;172(4):1894-1907
pubmed: 33724455
Cell Surf. 2021 May 06;7:100054
pubmed: 34141960
Plant Physiol. 1988 Oct;88(2):367-9
pubmed: 16666309
J Exp Bot. 2009;60(8):2391-405
pubmed: 19457982
Plant Physiol. 2008 Jun;147(2):585-94
pubmed: 18434607
Plant Cell Environ. 2017 Jun;40(6):938-961
pubmed: 27739588
J Exp Bot. 2009;60(8):2249-70
pubmed: 19395391
Tree Physiol. 1998 Aug-Sep;18(8_9):537-545
pubmed: 12651340
Plant Sci. 2012 Sep;193-194:70-84
pubmed: 22794920
Ecol Lett. 2010 Feb;13(2):175-83
pubmed: 19968696
J Exp Bot. 2020 Jan 1;71(1):318-329
pubmed: 31731291
J Exp Bot. 2008;59(2):327-34
pubmed: 18238801
J Exp Bot. 2009;60(8):2303-14
pubmed: 19286919
J Exp Bot. 2017 Nov 2;68(18):5191-5205
pubmed: 28992130
Oecologia. 2008 Apr;155(4):665-75
pubmed: 18193288
J Exp Bot. 2020 Dec 31;71(22):7198-7209
pubmed: 32905592
Plant Cell Environ. 2007 Mar;30(3):258-270
pubmed: 17263773
Oecologia. 1976 Jun;24(2):159-173
pubmed: 28309333
Plant Physiol. 1990 Dec;94(4):1830-6
pubmed: 16667923
New Phytol. 2009;182(3):565-588
pubmed: 19434804
Nature. 2006 Feb 9;439(7077):688-94
pubmed: 16340961
Plant Cell Environ. 2018 Feb;41(2):342-353
pubmed: 29044569
Planta. 1980 Jun;149(1):78-90
pubmed: 24306196
Plant Cell Environ. 2008 Nov;31(11):1688-700
pubmed: 18721264
Plant Physiol. 2011 May;156(1):90-105
pubmed: 21441385
Oecologia. 2006 Oct;149(4):571-82
pubmed: 16832649
Plant Cell Environ. 2016 May;39(5):965-82
pubmed: 26297108
New Phytol. 2019 Aug;223(3):1073-1105
pubmed: 30802971
Plant Cell Environ. 2015 Apr;38(4):629-37
pubmed: 25224884
Physiol Rev. 2015 Oct;95(4):1321-58
pubmed: 26336033
New Phytol. 2012 Nov;196(3):788-798
pubmed: 22978628
Plant Cell. 2016 Feb;28(2):568-82
pubmed: 26764375
J Exp Bot. 2021 May 18;72(11):3971-3986
pubmed: 33780533
PLoS One. 2011;6(7):e22236
pubmed: 21765957
Plant Physiol. 1996 Sep;112(1):319-326
pubmed: 12226395
Plant Cell Physiol. 2016 May;57(5):904-18
pubmed: 26985020
Biochemistry. 1973 Dec 4;12(25):5127-34
pubmed: 4210017

Auteurs

Yusuke Mizokami (Y)

Department of Life Science, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.

Riichi Oguchi (R)

Department of Biological Sciences, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.

Daisuke Sugiura (D)

Graduate School of Bioagricultural Sciences, Nagoya University, Furo, Chikusa-ku, Nagoya 464-8601, Japan.

Wataru Yamori (W)

Graduate School of Agricultural and Life Science, Institute for Sustainable Agri-ecosystem, The University of Tokyo, 1-1-1, Midoricho, Nishitokyo, Tokyo 188-0002, Japan.

Ko Noguchi (K)

Department of Life Science, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.

Ichiro Terashima (I)

Department of Biological Sciences, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Animals Hemiptera Insect Proteins Phylogeny Insecticides
Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins

Classifications MeSH