Truncated FGFR2 is a clinically actionable oncogene in multiple cancers.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
08 2022
08 2022
Historique:
received:
19
01
2021
accepted:
03
07
2022
pubmed:
11
8
2022
medline:
20
8
2022
entrez:
10
8
2022
Statut:
ppublish
Résumé
Somatic hotspot mutations and structural amplifications and fusions that affect fibroblast growth factor receptor 2 (encoded by FGFR2) occur in multiple types of cancer
Identifiants
pubmed: 35948633
doi: 10.1038/s41586-022-05066-5
pii: 10.1038/s41586-022-05066-5
pmc: PMC9436779
doi:
Substances chimiques
Protein Kinase Inhibitors
0
FGFR2 protein, human
EC 2.7.10.1
Receptor, Fibroblast Growth Factor, Type 2
EC 2.7.10.1
Types de publication
Clinical Trial
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
609-617Subventions
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : NCI NIH HHS
ID : P30 CA008748
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA072720
Pays : United States
Commentaires et corrections
Type : ErratumIn
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Katoh, M. Fibroblast growth factor receptors as treatment targets in clinical oncology. Nat. Rev. Clin. Oncol. 16, 105–122 (2019).
pubmed: 30367139
doi: 10.1038/s41571-018-0115-y
Pearson, A. et al. High-level clonal FGFR amplification and response to FGFR inhibition in a translational clinical trial. Cancer Discov. 6, 838–851 (2016).
pubmed: 27179038
pmcid: 5338732
doi: 10.1158/2159-8290.CD-15-1246
Van Cutsem, E. et al. A randomized, open-label study of the efficacy and safety of AZD4547 monotherapy versus paclitaxel for the treatment of advanced gastric adenocarcinoma with FGFR2 polysomy or gene amplification. Ann. Oncol. 28, 1316–1324 (2017).
pubmed: 29177434
doi: 10.1093/annonc/mdx107
Chae, Y. K. et al. Phase II study of AZD4547 in patients with tumors harboring aberrations in the FGFR pathway: results from the NCI-MATCH trial (EAY131) subprotocol W. J. Clin. Oncol. 38, 2407–2417 (2020).
pubmed: 32463741
pmcid: 7367548
doi: 10.1200/JCO.19.02630
Tabernero, J. et al. Phase I dose-escalation study of JNJ-42756493, an oral pan–fibroblast growth factor receptor inhibitor, in patients with advanced solid tumors. J. Clin. Oncol. 33, 3401–3408 (2015).
pubmed: 26324363
doi: 10.1200/JCO.2014.60.7341
Javle, M. et al. Phase II study of BGJ398 in patients with FGFR-altered advanced cholangiocarcinoma. J. Clin. Oncol. 36, 276–282 (2018).
pubmed: 29182496
doi: 10.1200/JCO.2017.75.5009
Voss, M. H. et al. A phase I, open-label, multicenter, dose-escalation study of the oral selective FGFR inhibitor debio 1347 in patients with advanced solid tumors harboring FGFR gene alterations. Clin. Cancer Res. 25, 2699–2707 (2019).
pubmed: 30745300
pmcid: 9014845
doi: 10.1158/1078-0432.CCR-18-1959
Subbiah, V. et al. FIGHT-101, a first-in-human study of potent and selective FGFR 1-3 inhibitor pemigatinib in pan-cancer patients with FGF/FGFR alterations and advanced malignancies. Ann. Oncol. 33, 522–533 (2022).
pubmed: 35176457
doi: 10.1016/j.annonc.2022.02.001
Abou-Alfa, G. K. et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study. Lancet Oncol. 21, 671–684 (2020).
pubmed: 32203698
pmcid: 8461541
doi: 10.1016/S1470-2045(20)30109-1
Kas, S. M. et al. Insertional mutagenesis identifies drivers of a novel oncogenic pathway in invasive lobular breast carcinoma. Nat. Genet. 49, 1219–1230 (2017).
pubmed: 28650484
doi: 10.1038/ng.3905
de Ruiter, J. R. et al. Identifying transposon insertions and their effects from RNA-sequencing data. Nucleic Acids Res. 45, 7064–7077 (2017).
pubmed: 28575524
pmcid: 5499543
doi: 10.1093/nar/gkx461
Annunziato, S. et al. Modeling invasive lobular breast carcinoma by CRISPR/Cas9-mediated somatic genome editing of the mammary gland. Genes Dev. 30, 1470–1480 (2016).
pubmed: 27340177
pmcid: 4926868
doi: 10.1101/gad.279190.116
Annunziato, S. et al. Comparative oncogenomics identifies combinations of driver genes and drug targets in BRCA1-mutated breast cancer. Nat. Commun. 10, 397 (2019).
pubmed: 30674894
pmcid: 6344487
doi: 10.1038/s41467-019-08301-2
Szybowska, P., Kostas, M., Wesche, J., Haugsten, E. M. & Wiedlocha, A. Negative regulation of FGFR (fibroblast growth factor receptor) signaling. Cells 10, 1342 (2021).
pubmed: 34071546
pmcid: 8226934
doi: 10.3390/cells10061342
Tannheimer, S. L., Rehemtulla, A. & Ethier, S. P. Characterization of fibroblast growth factor receptor 2 overexpression in the human breast cancer cell line SUM-52PE. Breast Cancer Res. 2, 311 (2000).
pubmed: 11056689
pmcid: 13919
doi: 10.1186/bcr73
Itoh, H. et al. Preferential alternative splicing in cancer generates a K-sam messenger RNA with higher transforming activity. Cancer Res. 54, 3237–3241 (1994).
pubmed: 8205545
Ueda, T. et al. Deletion of the carboxyl-terminal exons of K-sam/FGFR2 by short homology-mediated recombination, generating preferential expression of specific messenger RNAs. Cancer Res. 59, 6080–6086 (1999).
pubmed: 10626794
Sakaguchi, K., Lorenzi, M. V., Matsushita, H. & Miki, T. Identification of a novel activated form of the keratinocyte growth factor receptor by expression cloning from parathyroid adenoma tissue. Oncogene 18, 5497–5505 (1999).
pubmed: 10523826
doi: 10.1038/sj.onc.1202947
Lorenzi, M. V., Horii, Y., Yamanaka, R., Sakaguchi, K. & Miki, T. FRAG1, a gene that potently activates fibroblast growth factor receptor by C-terminal fusion through chromosomal rearrangement. Proc. Natl Acad. Sci. USA 93, 8956–8961 (1996).
pubmed: 8799135
pmcid: 38576
doi: 10.1073/pnas.93.17.8956
Wu, Y.-M. et al. Identification of targetable fgfr gene fusions in diverse cancers. Cancer Discov. 3, 636–647 (2013).
pubmed: 23558953
pmcid: 3694764
doi: 10.1158/2159-8290.CD-13-0050
Jusakul, A. et al. Whole-genome and epigenomic landscapes of etiologically distinct subtypes of cholangiocarcinoma. Cancer Discov. 7, 1116–1135 (2017).
pubmed: 28667006
pmcid: 5628134
doi: 10.1158/2159-8290.CD-17-0368
Qin, A. et al. Detection of known and novel FGFR fusions in non–small cell lung cancer by comprehensive genomic profiling. J. Thorac. Oncol. 14, 54–62 (2019).
pubmed: 30267839
doi: 10.1016/j.jtho.2018.09.014
Priestley, P. et al. Pan-cancer whole-genome analyses of metastatic solid tumours. Nature 575, 210–216 (2019).
pubmed: 31645765
pmcid: 6872491
doi: 10.1038/s41586-019-1689-y
Li, Y. et al. Patterns of somatic structural variation in human cancer genomes. Nature 578, 112–121 (2020).
pubmed: 32025012
pmcid: 7025897
doi: 10.1038/s41586-019-1913-9
Lorenzi, M. V., Castagnino, P., Chen, Q., Chedid, M. & Miki, T. Ligand-independent activation of fibroblast growth factor receptor-2 by carboxyl terminal alterations. Oncogene 15, 817–826 (1997).
pubmed: 9266968
doi: 10.1038/sj.onc.1201242
Moffa, A. B., Tannheimer, S. L. & Ethier, S. P. Transforming potential of alternatively spliced variants of fibroblast growth factor receptor 2 in human mammary epithelial cells. Mol. Cancer Res. 2, 643–652 (2004).
pubmed: 15561780
doi: 10.1158/1541-7786.643.2.11
Cha, J. Y., Maddileti, S., Mitin, N., Harden, T. K. & Der, C. J. Aberrant receptor internalization and enhanced FRS2-dependent signaling contribute to the transforming activity of the fibroblast growth factor receptor 2 IIIb C3 isoform. J. Biol. Chem. 284, 6227–6240 (2009).
pubmed: 19103595
pmcid: 2649112
doi: 10.1074/jbc.M803998200
Rothé, B. et al. Crystal structure of Bicc1 SAM polymer and mapping of interactions between the ciliopathy-associated proteins Bicc1, ANKS3, and ANKS6. Structure 26, 209–224 (2018).
pubmed: 29290488
doi: 10.1016/j.str.2017.12.002
Ciriello, G. et al. Comprehensive molecular portraits of invasive lobular breast cancer. Cell 163, 506–519 (2015).
pubmed: 26451490
pmcid: 4603750
doi: 10.1016/j.cell.2015.09.033
Ghandi, M. et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature 569, 503–508 (2019).
pubmed: 31068700
pmcid: 6697103
doi: 10.1038/s41586-019-1186-3
Seashore-Ludlow, B. et al. Harnessing connectivity in a large-scale small-molecule sensitivity dataset. Cancer Discov. 5, 1210–1223 (2015).
pubmed: 26482930
pmcid: 4631646
doi: 10.1158/2159-8290.CD-15-0235
Iorio, F. et al. A landscape of pharmacogenomic interactions in cancer. Cell 166, 740–754 (2016).
pubmed: 27397505
pmcid: 4967469
doi: 10.1016/j.cell.2016.06.017
Sánchez-Guixé, M. et al. High FGFR1–4 mRNA expression levels correlate with response to selective fgfr inhibitors in breast cancer. Clin. Cancer Res. 28, 137–149 (2022).
pubmed: 34593528
doi: 10.1158/1078-0432.CCR-21-1810
Turner, N. et al. Integrative molecular profiling of triple negative breast cancers identifies amplicon drivers and potential therapeutic targets. Oncogene 29, 2013–2023 (2010).
pubmed: 20101236
pmcid: 2852518
doi: 10.1038/onc.2009.489
Mathur, A. et al. FGFR2 is amplified in the NCI-H716 colorectal cancer cell line and is required for growth and survival. PLoS ONE 9, e98515 (2014).
pubmed: 24968263
pmcid: 4072591
doi: 10.1371/journal.pone.0098515
Hart, K. C., Robertson, S. C. & Donoghue, D. J. Identification of tyrosine residues in constitutively activated fibroblast growth factor receptor 3 involved in mitogenesis, stat activation, and phosphatidylinositol 3-kinase activation. Mol. Biol. Cell 12, 931–942 (2001).
pubmed: 11294897
pmcid: 32277
doi: 10.1091/mbc.12.4.931
Nadratowska-Wesolowska, B. et al. RSK2 regulates endocytosis of FGF receptor 1 by phosphorylation on serine 789. Oncogene 33, 4823–4836 (2014).
pubmed: 24141780
doi: 10.1038/onc.2013.425
Szybowska, P., Kostas, M., Wesche, J., Wiedlocha, A. & Haugsten, E. M. Cancer mutations in FGFR2 prevent a negative feedback loop mediated by the ERK1/2 pathway. Cells 8, 518 (2019).
pmcid: 6627556
doi: 10.3390/cells8060518
Lin, C.-C. et al. Inhibition of basal FGF receptor signaling by dimeric Grb2. Cell 149, 1514–1524 (2012).
pubmed: 22726438
doi: 10.1016/j.cell.2012.04.033
Lin, C.-C. et al. Regulation of kinase activity by combined action of juxtamembrane and C-terminal regions of receptors. Preprint at bioRxiv https://doi.org/10.1101/2020.10.01.322123 (2020).
Khazaie, K. et al. Truncation of the human EGF receptor leads to differential transforming potentials in primary avian fibroblasts and erythroblasts. EMBO J. 7, 3061–3071 (1988).
pubmed: 3263272
pmcid: 454693
doi: 10.1002/j.1460-2075.1988.tb03171.x
Akiyama, T. et al. The transforming potential of the c-erbB-2 protein is regulated by its autophosphorylation at the carboxyl-terminal domain. Mol. Cell. Biol. 11, 833–842 (1991).
pubmed: 1671296
pmcid: 359735
Woolford, J., McAuliffe, A. & Rohrschneider, L. R. Activation of the feline c-fms proto-oncogene: multiple alterations are required to generate a fully transformed phenotype. Cell 55, 965–977 (1988).
pubmed: 2849512
doi: 10.1016/0092-8674(88)90242-5
Niu, X.-L., Peters, K. G. & Kontos, C. D. Deletion of the carboxyl terminus of Tie2 enhances kinase activity, signaling, and function. J. Biol. Chem. 277, 31768–31773 (2002).
pubmed: 12082108
doi: 10.1074/jbc.M203995200
Hung, K. L. et al. ecDNA hubs drive cooperative intermolecular oncogene expression. Nature 600, 731–736 (2021).
pubmed: 34819668
pmcid: 9126690
doi: 10.1038/s41586-021-04116-8
Ota, S., Zhou, Z.-Q., Link, J. M. & Hurlin, P. J. The role of senescence and prosurvival signaling in controlling the oncogenic activity of FGFR2 mutants associated with cancer and birth defects. Hum. Mol. Genet. 18, 2609–2621 (2009).
pubmed: 19403560
pmcid: 2701333
doi: 10.1093/hmg/ddp195
Hertzler-Schaefer, K. et al. Pten loss induces autocrine FGF signaling to promote skin tumorigenesis. Cell Rep. 6, 818–826 (2014).
pubmed: 24582960
pmcid: 4080841
doi: 10.1016/j.celrep.2014.01.045
Koziczak, M., Holbro, T. & Hynes, N. E. Blocking of FGFR signaling inhibits breast cancer cell proliferation through downregulation of D-type cyclins. Oncogene 23, 3501–3508 (2004).
pubmed: 15116089
doi: 10.1038/sj.onc.1207331
Liu, H. et al. c-Myc alteration determines the therapeutic response to FGFR inhibitors. Clin. Cancer Res. 23, 974–984 (2017).
pubmed: 27401245
doi: 10.1158/1078-0432.CCR-15-2448
Formisano, L. et al. Aberrant FGFR signaling mediates resistance to CDK4/6 inhibitors in ER
pubmed: 30914635
pmcid: 6435685
doi: 10.1038/s41467-019-09068-2
Derksen, P. W. B. et al. Somatic inactivation of E-cadherin and p53 in mice leads to metastatic lobular mammary carcinoma through induction of anoikis resistance and angiogenesis. Cancer Cell 10, 437–449 (2006).
pubmed: 17097565
doi: 10.1016/j.ccr.2006.09.013
Derksen, P. W. B. et al. Mammary-specific inactivation of E-cadherin and p53 impairs functional gland development and leads to pleomorphic invasive lobular carcinoma in mice. Dis. Model. Mech. 4, 347–358 (2011).
pubmed: 21282721
pmcid: 3097456
doi: 10.1242/dmm.006395
Schipper, K. et al. Rebalancing of actomyosin contractility enables mammary tumor formation upon loss of E-cadherin. Nat. Commun. 10, 3800 (2019).
pubmed: 31444332
pmcid: 6707221
doi: 10.1038/s41467-019-11716-6
Huijbers, I. J. et al. Using the GEMM-ESC strategy to study gene function in mouse models. Nat. Protoc. 10, 1755–1785 (2015).
pubmed: 26492136
doi: 10.1038/nprot.2015.114
Kas, S. M. et al. Transcriptomics and transposon mutagenesis identify multiple mechanisms of resistance to the FGFR inhibitor AZD4547. Cancer Res. 78, 5668–5679 (2018).
pubmed: 30115694
doi: 10.1158/0008-5472.CAN-18-0757
Faul, F., Erdfelder, E., Buchner, A. & Lang, A.-G. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav. Res. Methods 41, 1149–1160 (2009).
pubmed: 19897823
doi: 10.3758/BRM.41.4.1149
Henneman, L. et al. Selective resistance to the PARP inhibitor olaparib in a mouse model for BRCA1-deficient metaplastic breast cancer. Proc. Natl Acad. Sci. USA 112, 8409–8414 (2015).
pubmed: 26100884
pmcid: 4500240
doi: 10.1073/pnas.1500223112
Cardiff, R. D. et al. The mammary pathology of genetically engineered mice: the consensus report and recommendations from the Annapolis meeting. Oncogene 19, 968–988 (2000).
pubmed: 10713680
doi: 10.1038/sj.onc.1203277
Montini, E. et al. The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy. J. Clin. Invest. 119, 964–975 (2009).
pubmed: 19307726
pmcid: 2662564
doi: 10.1172/JCI37630
Gaasterland, T. et al. Computational principles of primer design for site directed mutagenesis. TechConnect Briefs 1, 532–535 (2005).
Follenzi, A., Ailles, L. E., Bakovic, S., Geuna, M. & Naldini, L. Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nat. Genet. 25, 217–222 (2000).
pubmed: 10835641
doi: 10.1038/76095
Zingg, D. et al. EZH2-mediated primary cilium deconstruction drives metastatic melanoma formation. Cancer Cell 34, 69–84 (2018).
pubmed: 30008323
doi: 10.1016/j.ccell.2018.06.001
Zhang, J. et al. Translating the therapeutic potential of AZD4547 in FGFR1-amplified non-small cell lung cancer through the use of patient-derived tumor xenograft models. Clin. Cancer Res. 18, 6658–6667 (2012).
pubmed: 23082000
doi: 10.1158/1078-0432.CCR-12-2694
Guagnano, V. et al. FGFR genetic alterations predict for sensitivity to NVP-BGJ398, a selective pan-FGFR inhibitor. Cancer Discov. 2, 1118–1133 (2012).
pubmed: 23002168
doi: 10.1158/2159-8290.CD-12-0210
Nakanishi, Y. et al. The fibroblast growth factor receptor genetic status as a potential predictor of the sensitivity to CH5183284/Debio 1347, a novel selective FGFR inhibitor. Mol. Cancer Ther. 13, 2547–2558 (2014).
pubmed: 25169980
doi: 10.1158/1535-7163.MCT-14-0248
Liu, P. C. C. et al. INCB054828 (pemigatinib), a potent and selective inhibitor of fibroblast growth factor receptors 1, 2, and 3, displays activity against genetically defined tumor models. PLoS ONE 15, e0231877 (2020).
pubmed: 32315352
pmcid: 7313537
doi: 10.1371/journal.pone.0231877
Delwel, G. O. et al. Expression and function of the cytoplasmic variants of the integrin alpha 6 subunit in transfected K562 cells. Activation-dependent adhesion and interaction with isoforms of laminin. J. Biol. Chem. 268, 25865–25875 (1993).
pubmed: 8245021
doi: 10.1016/S0021-9258(19)74468-8
Boelens, M. C. et al. PTEN loss in E-cadherin-deficient mouse mammary epithelial cells rescues apoptosis and results in development of classical invasive lobular carcinoma. Cell Rep. 16, 2087–2101 (2016).
pubmed: 27524621
pmcid: 4999419
doi: 10.1016/j.celrep.2016.07.059
Ye, J. et al. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 13, 134 (2012).
doi: 10.1186/1471-2105-13-134
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
pubmed: 22743772
doi: 10.1038/nmeth.2019
Rolfs, F., Piersma, S. R., Dias, M. P., Jonkers, J. & Jimenez, C. R. Feasibility of phosphoproteomics on leftover samples after RNA extraction with guanidinium thiocyanate. Mol. Cell. Proteomics 20, 100078 (2021).
pubmed: 33819647
pmcid: 8111777
doi: 10.1016/j.mcpro.2021.100078
Gogola, E. et al. Selective loss of PARG restores PARylation and counteracts PARP inhibitor-mediated synthetic lethality. Cancer Cell 33, 1078–1093 (2018).
pubmed: 29894693
doi: 10.1016/j.ccell.2018.05.008
Beekhof, R. et al. INKA, an integrative data analysis pipeline for phosphoproteomic inference of active kinases. Mol. Syst. Biol. 15, e8250 (2019).
pubmed: 30979792
pmcid: 6461034
doi: 10.15252/msb.20198981
Böttger, F. et al. Tumor heterogeneity underlies differential cisplatin sensitivity in mouse models of small-cell lung cancer. Cell Rep. 27, 3345–3358 (2019).
pubmed: 31189116
pmcid: 6581744
doi: 10.1016/j.celrep.2019.05.057
Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).
pubmed: 19029910
doi: 10.1038/nbt.1511
Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 11, 2301–2319 (2016).
pubmed: 27809316
doi: 10.1038/nprot.2016.136
Reich, M. et al. GenePattern 2.0. Nat. Genet. 38, 500–501 (2006).
pubmed: 16642009
doi: 10.1038/ng0506-500
Barbie, D. A. et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462, 108–112 (2009).
pubmed: 19847166
pmcid: 2783335
doi: 10.1038/nature08460
Liberzon, A. et al. The Molecular Signatures Database Hallmark gene set collection. Cell Syst. 1, 417–425 (2015).
pubmed: 26771021
pmcid: 4707969
doi: 10.1016/j.cels.2015.12.004
Olsen, J. V. et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635–648 (2006).
pubmed: 17081983
doi: 10.1016/j.cell.2006.09.026
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
pubmed: 25605792
pmcid: 4402510
doi: 10.1093/nar/gkv007
Krug, K. et al. A curated resource for phosphosite-specific signature analysis. Mol. Cell. Proteomics 18, 576–593 (2019).
pubmed: 30563849
doi: 10.1074/mcp.TIR118.000943
Yılmaz, S. et al. Robust inference of kinase activity using functional networks. Nat. Commun. 12, 1177 (2021).
pubmed: 33608514
pmcid: 7895941
doi: 10.1038/s41467-021-21211-6
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886
doi: 10.1093/bioinformatics/bts635
Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).
pubmed: 21221095
pmcid: 3346182
doi: 10.1038/nbt.1754
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
pubmed: 19451168
pmcid: 2705234
doi: 10.1093/bioinformatics/btp324
Cameron, D. L. et al. GRIDSS: sensitive and specific genomic rearrangement detection using positional de Bruijn graph assembly. Genome Res. 27, 2050–2060 (2017).
pubmed: 29097403
pmcid: 5741059
doi: 10.1101/gr.222109.117
Cameron, D. et al. GRIDSS, PURPLE, LINX: unscrambling the tumor genome via integrated analysis of structural variation and copy number. Preprint at bioRxiv https://doi.org/10.1101/781013 (2019).
Haas, B. J. et al. Accuracy assessment of fusion transcript detection via read-mapping and de novo fusion transcript assembly-based methods. Genome Biol. 20, 213 (2019).
pubmed: 31639029
pmcid: 6802306
doi: 10.1186/s13059-019-1842-9
Weinstein, J. N. et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).
pubmed: 24071849
pmcid: 3919969
doi: 10.1038/ng.2764
Gao, Q. et al. Driver fusions and their implications in the development and treatment of human cancers. Cell Rep. 23, 227–238 (2018).
pubmed: 29617662
pmcid: 5916809
doi: 10.1016/j.celrep.2018.03.050
Cerami, E. et al. The cBio Cancer Genomics Portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).
pubmed: 22588877
doi: 10.1158/2159-8290.CD-12-0095
Colaprico, A. et al. TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 44, e71 (2016).
pubmed: 26704973
doi: 10.1093/nar/gkv1507
Nakamura, I. T. et al. Comprehensive functional evaluation of variants of fibroblast growth factor receptor genes in cancer. NPJ Precis. Oncol. 5, 66 (2021).
pubmed: 34272467
pmcid: 8285406
doi: 10.1038/s41698-021-00204-0
Smirnov, P. et al. PharmacoDB: an integrative database for mining in vitro anticancer drug screening studies. Nucleic Acids Res. 46, D994–D1002 (2018).
pubmed: 30053271
doi: 10.1093/nar/gkx911
Scheinin, I. et al. DNA copy number analysis of fresh and formalin-fixed specimens by shallow whole-genome sequencing with identification and exclusion of problematic regions in the genome assembly. Genome Res. 24, 2022–2032 (2014).
pubmed: 25236618
pmcid: 4248318
doi: 10.1101/gr.175141.114
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
pubmed: 24227677
doi: 10.1093/bioinformatics/btt656
Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, R25 (2010).
pubmed: 20196867
pmcid: 2864565
doi: 10.1186/gb-2010-11-3-r25
Robinson, M. D., McCarthy, D. J. & Smyth, G, K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
pubmed: 19910308
doi: 10.1093/bioinformatics/btp616
Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 12, 323 (2011).
doi: 10.1186/1471-2105-12-323
Li, Y. I. et al. Annotation-free quantification of RNA splicing using LeafCutter. Nat. Genet. 50, 151–158 (2018).
pubmed: 29229983
doi: 10.1038/s41588-017-0004-9
Chen, D. et al. In vivo pharmacology models for cancer target research. Methods Mol. Biol. 1953, 183–211 (2019).
Kim, S.-M. et al. Activation of the Met kinase confers acquired drug resistance in FGFR-targeted lung cancer therapy. Oncogenesis 5, e241 (2016).
pubmed: 27429073
pmcid: 5399172
doi: 10.1038/oncsis.2016.48
Ahdesmäki, M. J., Gray, S. R., Johnson, J. H. & Lai, Z. Disambiguate: an open-source application for disambiguating two species in next generation sequencing data from grafted samples. F1000Res 5, 2741 (2017).
pmcid: 5130069
doi: 10.12688/f1000research.10082.2
Frampton, G. M. et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat. Biotechnol. 31, 1023–1031 (2013).
pubmed: 24142049
pmcid: 5710001
doi: 10.1038/nbt.2696
He, J. et al. Integrated genomic DNA/RNA profiling of hematologic malignancies in the clinical setting. Blood 127, 3004–3014 (2016).
pubmed: 26966091
pmcid: 4968346
doi: 10.1182/blood-2015-08-664649
Clark, T. A. et al. Analytical validation of a hybrid capture–based next-generation sequencing clinical assay for genomic profiling of cell-free circulating tumor DNA. J. Mol. Diagn. 20, 686–702 (2018).
pubmed: 29936259
pmcid: 6593250
doi: 10.1016/j.jmoldx.2018.05.004
Liu, Z. et al. Proteome-wide prediction of self-interacting proteins based on multiple properties. Mol. Cell. Proteomics 12, 1689–700 (2013).
pubmed: 23422585
pmcid: 3675823
doi: 10.1074/mcp.M112.021790
Stein, A., Russell, R. B. & Aloy, P. 3did: interacting protein domains of known three-dimensional structure. Nucleic Acids Res. 33, D413–D417 (2005).
pubmed: 15608228
doi: 10.1093/nar/gki037
Alborzi, S. Z., Ahmed Nacer, A., Najjar, H., Ritchie, D. W. & Devignes, M.-D. PPIDomainMiner: inferring domain-domain interactions from multiple sources of protein-protein interactions. PLoS Comput. Biol. 17, e1008844 (2021).
pubmed: 34370723
pmcid: 8376228
doi: 10.1371/journal.pcbi.1008844
Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).
doi: 10.1038/nprot.2008.211
Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2019).
pubmed: 30395289
doi: 10.1093/nar/gky1106