Truncated FGFR2 is a clinically actionable oncogene in multiple cancers.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
08 2022
Historique:
received: 19 01 2021
accepted: 03 07 2022
pubmed: 11 8 2022
medline: 20 8 2022
entrez: 10 8 2022
Statut: ppublish

Résumé

Somatic hotspot mutations and structural amplifications and fusions that affect fibroblast growth factor receptor 2 (encoded by FGFR2) occur in multiple types of cancer

Identifiants

pubmed: 35948633
doi: 10.1038/s41586-022-05066-5
pii: 10.1038/s41586-022-05066-5
pmc: PMC9436779
doi:

Substances chimiques

Protein Kinase Inhibitors 0
FGFR2 protein, human EC 2.7.10.1
Receptor, Fibroblast Growth Factor, Type 2 EC 2.7.10.1

Types de publication

Clinical Trial Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

609-617

Subventions

Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : NCI NIH HHS
ID : P30 CA008748
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA072720
Pays : United States

Commentaires et corrections

Type : ErratumIn

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Katoh, M. Fibroblast growth factor receptors as treatment targets in clinical oncology. Nat. Rev. Clin. Oncol. 16, 105–122 (2019).
pubmed: 30367139 doi: 10.1038/s41571-018-0115-y
Pearson, A. et al. High-level clonal FGFR amplification and response to FGFR inhibition in a translational clinical trial. Cancer Discov. 6, 838–851 (2016).
pubmed: 27179038 pmcid: 5338732 doi: 10.1158/2159-8290.CD-15-1246
Van Cutsem, E. et al. A randomized, open-label study of the efficacy and safety of AZD4547 monotherapy versus paclitaxel for the treatment of advanced gastric adenocarcinoma with FGFR2 polysomy or gene amplification. Ann. Oncol. 28, 1316–1324 (2017).
pubmed: 29177434 doi: 10.1093/annonc/mdx107
Chae, Y. K. et al. Phase II study of AZD4547 in patients with tumors harboring aberrations in the FGFR pathway: results from the NCI-MATCH trial (EAY131) subprotocol W. J. Clin. Oncol. 38, 2407–2417 (2020).
pubmed: 32463741 pmcid: 7367548 doi: 10.1200/JCO.19.02630
Tabernero, J. et al. Phase I dose-escalation study of JNJ-42756493, an oral pan–fibroblast growth factor receptor inhibitor, in patients with advanced solid tumors. J. Clin. Oncol. 33, 3401–3408 (2015).
pubmed: 26324363 doi: 10.1200/JCO.2014.60.7341
Javle, M. et al. Phase II study of BGJ398 in patients with FGFR-altered advanced cholangiocarcinoma. J. Clin. Oncol. 36, 276–282 (2018).
pubmed: 29182496 doi: 10.1200/JCO.2017.75.5009
Voss, M. H. et al. A phase I, open-label, multicenter, dose-escalation study of the oral selective FGFR inhibitor debio 1347 in patients with advanced solid tumors harboring FGFR gene alterations. Clin. Cancer Res. 25, 2699–2707 (2019).
pubmed: 30745300 pmcid: 9014845 doi: 10.1158/1078-0432.CCR-18-1959
Subbiah, V. et al. FIGHT-101, a first-in-human study of potent and selective FGFR 1-3 inhibitor pemigatinib in pan-cancer patients with FGF/FGFR alterations and advanced malignancies. Ann. Oncol. 33, 522–533 (2022).
pubmed: 35176457 doi: 10.1016/j.annonc.2022.02.001
Abou-Alfa, G. K. et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study. Lancet Oncol. 21, 671–684 (2020).
pubmed: 32203698 pmcid: 8461541 doi: 10.1016/S1470-2045(20)30109-1
Kas, S. M. et al. Insertional mutagenesis identifies drivers of a novel oncogenic pathway in invasive lobular breast carcinoma. Nat. Genet. 49, 1219–1230 (2017).
pubmed: 28650484 doi: 10.1038/ng.3905
de Ruiter, J. R. et al. Identifying transposon insertions and their effects from RNA-sequencing data. Nucleic Acids Res. 45, 7064–7077 (2017).
pubmed: 28575524 pmcid: 5499543 doi: 10.1093/nar/gkx461
Annunziato, S. et al. Modeling invasive lobular breast carcinoma by CRISPR/Cas9-mediated somatic genome editing of the mammary gland. Genes Dev. 30, 1470–1480 (2016).
pubmed: 27340177 pmcid: 4926868 doi: 10.1101/gad.279190.116
Annunziato, S. et al. Comparative oncogenomics identifies combinations of driver genes and drug targets in BRCA1-mutated breast cancer. Nat. Commun. 10, 397 (2019).
pubmed: 30674894 pmcid: 6344487 doi: 10.1038/s41467-019-08301-2
Szybowska, P., Kostas, M., Wesche, J., Haugsten, E. M. & Wiedlocha, A. Negative regulation of FGFR (fibroblast growth factor receptor) signaling. Cells 10, 1342 (2021).
pubmed: 34071546 pmcid: 8226934 doi: 10.3390/cells10061342
Tannheimer, S. L., Rehemtulla, A. & Ethier, S. P. Characterization of fibroblast growth factor receptor 2 overexpression in the human breast cancer cell line SUM-52PE. Breast Cancer Res. 2, 311 (2000).
pubmed: 11056689 pmcid: 13919 doi: 10.1186/bcr73
Itoh, H. et al. Preferential alternative splicing in cancer generates a K-sam messenger RNA with higher transforming activity. Cancer Res. 54, 3237–3241 (1994).
pubmed: 8205545
Ueda, T. et al. Deletion of the carboxyl-terminal exons of K-sam/FGFR2 by short homology-mediated recombination, generating preferential expression of specific messenger RNAs. Cancer Res. 59, 6080–6086 (1999).
pubmed: 10626794
Sakaguchi, K., Lorenzi, M. V., Matsushita, H. & Miki, T. Identification of a novel activated form of the keratinocyte growth factor receptor by expression cloning from parathyroid adenoma tissue. Oncogene 18, 5497–5505 (1999).
pubmed: 10523826 doi: 10.1038/sj.onc.1202947
Lorenzi, M. V., Horii, Y., Yamanaka, R., Sakaguchi, K. & Miki, T. FRAG1, a gene that potently activates fibroblast growth factor receptor by C-terminal fusion through chromosomal rearrangement. Proc. Natl Acad. Sci. USA 93, 8956–8961 (1996).
pubmed: 8799135 pmcid: 38576 doi: 10.1073/pnas.93.17.8956
Wu, Y.-M. et al. Identification of targetable fgfr gene fusions in diverse cancers. Cancer Discov. 3, 636–647 (2013).
pubmed: 23558953 pmcid: 3694764 doi: 10.1158/2159-8290.CD-13-0050
Jusakul, A. et al. Whole-genome and epigenomic landscapes of etiologically distinct subtypes of cholangiocarcinoma. Cancer Discov. 7, 1116–1135 (2017).
pubmed: 28667006 pmcid: 5628134 doi: 10.1158/2159-8290.CD-17-0368
Qin, A. et al. Detection of known and novel FGFR fusions in non–small cell lung cancer by comprehensive genomic profiling. J. Thorac. Oncol. 14, 54–62 (2019).
pubmed: 30267839 doi: 10.1016/j.jtho.2018.09.014
Priestley, P. et al. Pan-cancer whole-genome analyses of metastatic solid tumours. Nature 575, 210–216 (2019).
pubmed: 31645765 pmcid: 6872491 doi: 10.1038/s41586-019-1689-y
Li, Y. et al. Patterns of somatic structural variation in human cancer genomes. Nature 578, 112–121 (2020).
pubmed: 32025012 pmcid: 7025897 doi: 10.1038/s41586-019-1913-9
Lorenzi, M. V., Castagnino, P., Chen, Q., Chedid, M. & Miki, T. Ligand-independent activation of fibroblast growth factor receptor-2 by carboxyl terminal alterations. Oncogene 15, 817–826 (1997).
pubmed: 9266968 doi: 10.1038/sj.onc.1201242
Moffa, A. B., Tannheimer, S. L. & Ethier, S. P. Transforming potential of alternatively spliced variants of fibroblast growth factor receptor 2 in human mammary epithelial cells. Mol. Cancer Res. 2, 643–652 (2004).
pubmed: 15561780 doi: 10.1158/1541-7786.643.2.11
Cha, J. Y., Maddileti, S., Mitin, N., Harden, T. K. & Der, C. J. Aberrant receptor internalization and enhanced FRS2-dependent signaling contribute to the transforming activity of the fibroblast growth factor receptor 2 IIIb C3 isoform. J. Biol. Chem. 284, 6227–6240 (2009).
pubmed: 19103595 pmcid: 2649112 doi: 10.1074/jbc.M803998200
Rothé, B. et al. Crystal structure of Bicc1 SAM polymer and mapping of interactions between the ciliopathy-associated proteins Bicc1, ANKS3, and ANKS6. Structure 26, 209–224 (2018).
pubmed: 29290488 doi: 10.1016/j.str.2017.12.002
Ciriello, G. et al. Comprehensive molecular portraits of invasive lobular breast cancer. Cell 163, 506–519 (2015).
pubmed: 26451490 pmcid: 4603750 doi: 10.1016/j.cell.2015.09.033
Ghandi, M. et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature 569, 503–508 (2019).
pubmed: 31068700 pmcid: 6697103 doi: 10.1038/s41586-019-1186-3
Seashore-Ludlow, B. et al. Harnessing connectivity in a large-scale small-molecule sensitivity dataset. Cancer Discov. 5, 1210–1223 (2015).
pubmed: 26482930 pmcid: 4631646 doi: 10.1158/2159-8290.CD-15-0235
Iorio, F. et al. A landscape of pharmacogenomic interactions in cancer. Cell 166, 740–754 (2016).
pubmed: 27397505 pmcid: 4967469 doi: 10.1016/j.cell.2016.06.017
Sánchez-Guixé, M. et al. High FGFR1–4 mRNA expression levels correlate with response to selective fgfr inhibitors in breast cancer. Clin. Cancer Res. 28, 137–149 (2022).
pubmed: 34593528 doi: 10.1158/1078-0432.CCR-21-1810
Turner, N. et al. Integrative molecular profiling of triple negative breast cancers identifies amplicon drivers and potential therapeutic targets. Oncogene 29, 2013–2023 (2010).
pubmed: 20101236 pmcid: 2852518 doi: 10.1038/onc.2009.489
Mathur, A. et al. FGFR2 is amplified in the NCI-H716 colorectal cancer cell line and is required for growth and survival. PLoS ONE 9, e98515 (2014).
pubmed: 24968263 pmcid: 4072591 doi: 10.1371/journal.pone.0098515
Hart, K. C., Robertson, S. C. & Donoghue, D. J. Identification of tyrosine residues in constitutively activated fibroblast growth factor receptor 3 involved in mitogenesis, stat activation, and phosphatidylinositol 3-kinase activation. Mol. Biol. Cell 12, 931–942 (2001).
pubmed: 11294897 pmcid: 32277 doi: 10.1091/mbc.12.4.931
Nadratowska-Wesolowska, B. et al. RSK2 regulates endocytosis of FGF receptor 1 by phosphorylation on serine 789. Oncogene 33, 4823–4836 (2014).
pubmed: 24141780 doi: 10.1038/onc.2013.425
Szybowska, P., Kostas, M., Wesche, J., Wiedlocha, A. & Haugsten, E. M. Cancer mutations in FGFR2 prevent a negative feedback loop mediated by the ERK1/2 pathway. Cells 8, 518 (2019).
pmcid: 6627556 doi: 10.3390/cells8060518
Lin, C.-C. et al. Inhibition of basal FGF receptor signaling by dimeric Grb2. Cell 149, 1514–1524 (2012).
pubmed: 22726438 doi: 10.1016/j.cell.2012.04.033
Lin, C.-C. et al. Regulation of kinase activity by combined action of juxtamembrane and C-terminal regions of receptors. Preprint at bioRxiv https://doi.org/10.1101/2020.10.01.322123 (2020).
Khazaie, K. et al. Truncation of the human EGF receptor leads to differential transforming potentials in primary avian fibroblasts and erythroblasts. EMBO J. 7, 3061–3071 (1988).
pubmed: 3263272 pmcid: 454693 doi: 10.1002/j.1460-2075.1988.tb03171.x
Akiyama, T. et al. The transforming potential of the c-erbB-2 protein is regulated by its autophosphorylation at the carboxyl-terminal domain. Mol. Cell. Biol. 11, 833–842 (1991).
pubmed: 1671296 pmcid: 359735
Woolford, J., McAuliffe, A. & Rohrschneider, L. R. Activation of the feline c-fms proto-oncogene: multiple alterations are required to generate a fully transformed phenotype. Cell 55, 965–977 (1988).
pubmed: 2849512 doi: 10.1016/0092-8674(88)90242-5
Niu, X.-L., Peters, K. G. & Kontos, C. D. Deletion of the carboxyl terminus of Tie2 enhances kinase activity, signaling, and function. J. Biol. Chem. 277, 31768–31773 (2002).
pubmed: 12082108 doi: 10.1074/jbc.M203995200
Hung, K. L. et al. ecDNA hubs drive cooperative intermolecular oncogene expression. Nature 600, 731–736 (2021).
pubmed: 34819668 pmcid: 9126690 doi: 10.1038/s41586-021-04116-8
Ota, S., Zhou, Z.-Q., Link, J. M. & Hurlin, P. J. The role of senescence and prosurvival signaling in controlling the oncogenic activity of FGFR2 mutants associated with cancer and birth defects. Hum. Mol. Genet. 18, 2609–2621 (2009).
pubmed: 19403560 pmcid: 2701333 doi: 10.1093/hmg/ddp195
Hertzler-Schaefer, K. et al. Pten loss induces autocrine FGF signaling to promote skin tumorigenesis. Cell Rep. 6, 818–826 (2014).
pubmed: 24582960 pmcid: 4080841 doi: 10.1016/j.celrep.2014.01.045
Koziczak, M., Holbro, T. & Hynes, N. E. Blocking of FGFR signaling inhibits breast cancer cell proliferation through downregulation of D-type cyclins. Oncogene 23, 3501–3508 (2004).
pubmed: 15116089 doi: 10.1038/sj.onc.1207331
Liu, H. et al. c-Myc alteration determines the therapeutic response to FGFR inhibitors. Clin. Cancer Res. 23, 974–984 (2017).
pubmed: 27401245 doi: 10.1158/1078-0432.CCR-15-2448
Formisano, L. et al. Aberrant FGFR signaling mediates resistance to CDK4/6 inhibitors in ER
pubmed: 30914635 pmcid: 6435685 doi: 10.1038/s41467-019-09068-2
Derksen, P. W. B. et al. Somatic inactivation of E-cadherin and p53 in mice leads to metastatic lobular mammary carcinoma through induction of anoikis resistance and angiogenesis. Cancer Cell 10, 437–449 (2006).
pubmed: 17097565 doi: 10.1016/j.ccr.2006.09.013
Derksen, P. W. B. et al. Mammary-specific inactivation of E-cadherin and p53 impairs functional gland development and leads to pleomorphic invasive lobular carcinoma in mice. Dis. Model. Mech. 4, 347–358 (2011).
pubmed: 21282721 pmcid: 3097456 doi: 10.1242/dmm.006395
Schipper, K. et al. Rebalancing of actomyosin contractility enables mammary tumor formation upon loss of E-cadherin. Nat. Commun. 10, 3800 (2019).
pubmed: 31444332 pmcid: 6707221 doi: 10.1038/s41467-019-11716-6
Huijbers, I. J. et al. Using the GEMM-ESC strategy to study gene function in mouse models. Nat. Protoc. 10, 1755–1785 (2015).
pubmed: 26492136 doi: 10.1038/nprot.2015.114
Kas, S. M. et al. Transcriptomics and transposon mutagenesis identify multiple mechanisms of resistance to the FGFR inhibitor AZD4547. Cancer Res. 78, 5668–5679 (2018).
pubmed: 30115694 doi: 10.1158/0008-5472.CAN-18-0757
Faul, F., Erdfelder, E., Buchner, A. & Lang, A.-G. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav. Res. Methods 41, 1149–1160 (2009).
pubmed: 19897823 doi: 10.3758/BRM.41.4.1149
Henneman, L. et al. Selective resistance to the PARP inhibitor olaparib in a mouse model for BRCA1-deficient metaplastic breast cancer. Proc. Natl Acad. Sci. USA 112, 8409–8414 (2015).
pubmed: 26100884 pmcid: 4500240 doi: 10.1073/pnas.1500223112
Cardiff, R. D. et al. The mammary pathology of genetically engineered mice: the consensus report and recommendations from the Annapolis meeting. Oncogene 19, 968–988 (2000).
pubmed: 10713680 doi: 10.1038/sj.onc.1203277
Montini, E. et al. The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy. J. Clin. Invest. 119, 964–975 (2009).
pubmed: 19307726 pmcid: 2662564 doi: 10.1172/JCI37630
Gaasterland, T. et al. Computational principles of primer design for site directed mutagenesis. TechConnect Briefs 1, 532–535 (2005).
Follenzi, A., Ailles, L. E., Bakovic, S., Geuna, M. & Naldini, L. Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nat. Genet. 25, 217–222 (2000).
pubmed: 10835641 doi: 10.1038/76095
Zingg, D. et al. EZH2-mediated primary cilium deconstruction drives metastatic melanoma formation. Cancer Cell 34, 69–84 (2018).
pubmed: 30008323 doi: 10.1016/j.ccell.2018.06.001
Zhang, J. et al. Translating the therapeutic potential of AZD4547 in FGFR1-amplified non-small cell lung cancer through the use of patient-derived tumor xenograft models. Clin. Cancer Res. 18, 6658–6667 (2012).
pubmed: 23082000 doi: 10.1158/1078-0432.CCR-12-2694
Guagnano, V. et al. FGFR genetic alterations predict for sensitivity to NVP-BGJ398, a selective pan-FGFR inhibitor. Cancer Discov. 2, 1118–1133 (2012).
pubmed: 23002168 doi: 10.1158/2159-8290.CD-12-0210
Nakanishi, Y. et al. The fibroblast growth factor receptor genetic status as a potential predictor of the sensitivity to CH5183284/Debio 1347, a novel selective FGFR inhibitor. Mol. Cancer Ther. 13, 2547–2558 (2014).
pubmed: 25169980 doi: 10.1158/1535-7163.MCT-14-0248
Liu, P. C. C. et al. INCB054828 (pemigatinib), a potent and selective inhibitor of fibroblast growth factor receptors 1, 2, and 3, displays activity against genetically defined tumor models. PLoS ONE 15, e0231877 (2020).
pubmed: 32315352 pmcid: 7313537 doi: 10.1371/journal.pone.0231877
Delwel, G. O. et al. Expression and function of the cytoplasmic variants of the integrin alpha 6 subunit in transfected K562 cells. Activation-dependent adhesion and interaction with isoforms of laminin. J. Biol. Chem. 268, 25865–25875 (1993).
pubmed: 8245021 doi: 10.1016/S0021-9258(19)74468-8
Boelens, M. C. et al. PTEN loss in E-cadherin-deficient mouse mammary epithelial cells rescues apoptosis and results in development of classical invasive lobular carcinoma. Cell Rep. 16, 2087–2101 (2016).
pubmed: 27524621 pmcid: 4999419 doi: 10.1016/j.celrep.2016.07.059
Ye, J. et al. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 13, 134 (2012).
doi: 10.1186/1471-2105-13-134
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
pubmed: 22743772 doi: 10.1038/nmeth.2019
Rolfs, F., Piersma, S. R., Dias, M. P., Jonkers, J. & Jimenez, C. R. Feasibility of phosphoproteomics on leftover samples after RNA extraction with guanidinium thiocyanate. Mol. Cell. Proteomics 20, 100078 (2021).
pubmed: 33819647 pmcid: 8111777 doi: 10.1016/j.mcpro.2021.100078
Gogola, E. et al. Selective loss of PARG restores PARylation and counteracts PARP inhibitor-mediated synthetic lethality. Cancer Cell 33, 1078–1093 (2018).
pubmed: 29894693 doi: 10.1016/j.ccell.2018.05.008
Beekhof, R. et al. INKA, an integrative data analysis pipeline for phosphoproteomic inference of active kinases. Mol. Syst. Biol. 15, e8250 (2019).
pubmed: 30979792 pmcid: 6461034 doi: 10.15252/msb.20198981
Böttger, F. et al. Tumor heterogeneity underlies differential cisplatin sensitivity in mouse models of small-cell lung cancer. Cell Rep. 27, 3345–3358 (2019).
pubmed: 31189116 pmcid: 6581744 doi: 10.1016/j.celrep.2019.05.057
Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).
pubmed: 19029910 doi: 10.1038/nbt.1511
Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 11, 2301–2319 (2016).
pubmed: 27809316 doi: 10.1038/nprot.2016.136
Reich, M. et al. GenePattern 2.0. Nat. Genet. 38, 500–501 (2006).
pubmed: 16642009 doi: 10.1038/ng0506-500
Barbie, D. A. et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462, 108–112 (2009).
pubmed: 19847166 pmcid: 2783335 doi: 10.1038/nature08460
Liberzon, A. et al. The Molecular Signatures Database Hallmark gene set collection. Cell Syst. 1, 417–425 (2015).
pubmed: 26771021 pmcid: 4707969 doi: 10.1016/j.cels.2015.12.004
Olsen, J. V. et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635–648 (2006).
pubmed: 17081983 doi: 10.1016/j.cell.2006.09.026
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
pubmed: 25605792 pmcid: 4402510 doi: 10.1093/nar/gkv007
Krug, K. et al. A curated resource for phosphosite-specific signature analysis. Mol. Cell. Proteomics 18, 576–593 (2019).
pubmed: 30563849 doi: 10.1074/mcp.TIR118.000943
Yılmaz, S. et al. Robust inference of kinase activity using functional networks. Nat. Commun. 12, 1177 (2021).
pubmed: 33608514 pmcid: 7895941 doi: 10.1038/s41467-021-21211-6
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886 doi: 10.1093/bioinformatics/bts635
Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).
pubmed: 21221095 pmcid: 3346182 doi: 10.1038/nbt.1754
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
pubmed: 19451168 pmcid: 2705234 doi: 10.1093/bioinformatics/btp324
Cameron, D. L. et al. GRIDSS: sensitive and specific genomic rearrangement detection using positional de Bruijn graph assembly. Genome Res. 27, 2050–2060 (2017).
pubmed: 29097403 pmcid: 5741059 doi: 10.1101/gr.222109.117
Cameron, D. et al. GRIDSS, PURPLE, LINX: unscrambling the tumor genome via integrated analysis of structural variation and copy number. Preprint at bioRxiv https://doi.org/10.1101/781013 (2019).
Haas, B. J. et al. Accuracy assessment of fusion transcript detection via read-mapping and de novo fusion transcript assembly-based methods. Genome Biol. 20, 213 (2019).
pubmed: 31639029 pmcid: 6802306 doi: 10.1186/s13059-019-1842-9
Weinstein, J. N. et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).
pubmed: 24071849 pmcid: 3919969 doi: 10.1038/ng.2764
Gao, Q. et al. Driver fusions and their implications in the development and treatment of human cancers. Cell Rep. 23, 227–238 (2018).
pubmed: 29617662 pmcid: 5916809 doi: 10.1016/j.celrep.2018.03.050
Cerami, E. et al. The cBio Cancer Genomics Portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).
pubmed: 22588877 doi: 10.1158/2159-8290.CD-12-0095
Colaprico, A. et al. TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 44, e71 (2016).
pubmed: 26704973 doi: 10.1093/nar/gkv1507
Nakamura, I. T. et al. Comprehensive functional evaluation of variants of fibroblast growth factor receptor genes in cancer. NPJ Precis. Oncol. 5, 66 (2021).
pubmed: 34272467 pmcid: 8285406 doi: 10.1038/s41698-021-00204-0
Smirnov, P. et al. PharmacoDB: an integrative database for mining in vitro anticancer drug screening studies. Nucleic Acids Res. 46, D994–D1002 (2018).
pubmed: 30053271 doi: 10.1093/nar/gkx911
Scheinin, I. et al. DNA copy number analysis of fresh and formalin-fixed specimens by shallow whole-genome sequencing with identification and exclusion of problematic regions in the genome assembly. Genome Res. 24, 2022–2032 (2014).
pubmed: 25236618 pmcid: 4248318 doi: 10.1101/gr.175141.114
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
pubmed: 24227677 doi: 10.1093/bioinformatics/btt656
Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, R25 (2010).
pubmed: 20196867 pmcid: 2864565 doi: 10.1186/gb-2010-11-3-r25
Robinson, M. D., McCarthy, D. J. & Smyth, G, K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
pubmed: 19910308 doi: 10.1093/bioinformatics/btp616
Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 12, 323 (2011).
doi: 10.1186/1471-2105-12-323
Li, Y. I. et al. Annotation-free quantification of RNA splicing using LeafCutter. Nat. Genet. 50, 151–158 (2018).
pubmed: 29229983 doi: 10.1038/s41588-017-0004-9
Chen, D. et al. In vivo pharmacology models for cancer target research. Methods Mol. Biol. 1953, 183–211 (2019).
Kim, S.-M. et al. Activation of the Met kinase confers acquired drug resistance in FGFR-targeted lung cancer therapy. Oncogenesis 5, e241 (2016).
pubmed: 27429073 pmcid: 5399172 doi: 10.1038/oncsis.2016.48
Ahdesmäki, M. J., Gray, S. R., Johnson, J. H. & Lai, Z. Disambiguate: an open-source application for disambiguating two species in next generation sequencing data from grafted samples. F1000Res 5, 2741 (2017).
pmcid: 5130069 doi: 10.12688/f1000research.10082.2
Frampton, G. M. et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat. Biotechnol. 31, 1023–1031 (2013).
pubmed: 24142049 pmcid: 5710001 doi: 10.1038/nbt.2696
He, J. et al. Integrated genomic DNA/RNA profiling of hematologic malignancies in the clinical setting. Blood 127, 3004–3014 (2016).
pubmed: 26966091 pmcid: 4968346 doi: 10.1182/blood-2015-08-664649
Clark, T. A. et al. Analytical validation of a hybrid capture–based next-generation sequencing clinical assay for genomic profiling of cell-free circulating tumor DNA. J. Mol. Diagn. 20, 686–702 (2018).
pubmed: 29936259 pmcid: 6593250 doi: 10.1016/j.jmoldx.2018.05.004
Liu, Z. et al. Proteome-wide prediction of self-interacting proteins based on multiple properties. Mol. Cell. Proteomics 12, 1689–700 (2013).
pubmed: 23422585 pmcid: 3675823 doi: 10.1074/mcp.M112.021790
Stein, A., Russell, R. B. & Aloy, P. 3did: interacting protein domains of known three-dimensional structure. Nucleic Acids Res. 33, D413–D417 (2005).
pubmed: 15608228 doi: 10.1093/nar/gki037
Alborzi, S. Z., Ahmed Nacer, A., Najjar, H., Ritchie, D. W. & Devignes, M.-D. PPIDomainMiner: inferring domain-domain interactions from multiple sources of protein-protein interactions. PLoS Comput. Biol. 17, e1008844 (2021).
pubmed: 34370723 pmcid: 8376228 doi: 10.1371/journal.pcbi.1008844
Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).
doi: 10.1038/nprot.2008.211
Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2019).
pubmed: 30395289 doi: 10.1093/nar/gky1106

Auteurs

Daniel Zingg (D)

Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
Oncode Institute, Utrecht, The Netherlands.

Jinhyuk Bhin (J)

Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
Oncode Institute, Utrecht, The Netherlands.
Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands.

Julia Yemelyanenko (J)

Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
Oncode Institute, Utrecht, The Netherlands.

Sjors M Kas (SM)

Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
Oncode Institute, Utrecht, The Netherlands.

Frank Rolfs (F)

Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
Oncode Institute, Utrecht, The Netherlands.
OncoProteomics Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.

Catrin Lutz (C)

Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
Oncode Institute, Utrecht, The Netherlands.

Jessica K Lee (JK)

Foundation Medicine, Cambridge, MA, USA.

Sjoerd Klarenbeek (S)

Experimental Animal Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.

Ian M Silverman (IM)

Incyte Research Institute, Wilmington, DE, USA.

Stefano Annunziato (S)

Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
Oncode Institute, Utrecht, The Netherlands.

Chang S Chan (CS)

Department of Medicine, Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.
Department of Medicine and Pharmacology, Rutgers University, Piscataway, NJ, USA.

Sander R Piersma (SR)

OncoProteomics Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.

Timo Eijkman (T)

Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
Oncode Institute, Utrecht, The Netherlands.

Madelon Badoux (M)

Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
Oncode Institute, Utrecht, The Netherlands.

Ewa Gogola (E)

Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
Oncode Institute, Utrecht, The Netherlands.

Bjørn Siteur (B)

Mouse Clinic for Cancer and Aging, Netherlands Cancer Institute, Amsterdam, The Netherlands.

Justin Sprengers (J)

Mouse Clinic for Cancer and Aging, Netherlands Cancer Institute, Amsterdam, The Netherlands.

Bim de Klein (B)

Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
Oncode Institute, Utrecht, The Netherlands.

Richard R de Goeij-de Haas (RR)

OncoProteomics Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.

Gregory M Riedlinger (GM)

Department of Medicine and Pharmacology, Rutgers University, Piscataway, NJ, USA.
Department of Pathology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.

Hua Ke (H)

Department of Medicine, Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.
Department of Medicine and Pharmacology, Rutgers University, Piscataway, NJ, USA.

Russell Madison (R)

Foundation Medicine, Cambridge, MA, USA.

Anne Paulien Drenth (AP)

Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
Oncode Institute, Utrecht, The Netherlands.

Eline van der Burg (E)

Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
Oncode Institute, Utrecht, The Netherlands.

Eva Schut (E)

Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
Oncode Institute, Utrecht, The Netherlands.

Linda Henneman (L)

Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
Oncode Institute, Utrecht, The Netherlands.
Mouse Clinic for Cancer and Aging, Netherlands Cancer Institute, Amsterdam, The Netherlands.

Martine H van Miltenburg (MH)

Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
Oncode Institute, Utrecht, The Netherlands.

Natalie Proost (N)

Mouse Clinic for Cancer and Aging, Netherlands Cancer Institute, Amsterdam, The Netherlands.

Huiling Zhen (H)

Incyte, Wilmington, DE, USA.

Ellen Wientjens (E)

Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
Oncode Institute, Utrecht, The Netherlands.

Roebi de Bruijn (R)

Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
Oncode Institute, Utrecht, The Netherlands.
Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands.

Julian R de Ruiter (JR)

Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
Oncode Institute, Utrecht, The Netherlands.
Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands.

Ute Boon (U)

Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
Oncode Institute, Utrecht, The Netherlands.

Renske de Korte-Grimmerink (R)

Mouse Clinic for Cancer and Aging, Netherlands Cancer Institute, Amsterdam, The Netherlands.

Bastiaan van Gerwen (B)

Mouse Clinic for Cancer and Aging, Netherlands Cancer Institute, Amsterdam, The Netherlands.

Luis Féliz (L)

Incyte Biosciences International, Morges, Switzerland.

Ghassan K Abou-Alfa (GK)

Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Department of Medicine, Weill Medical College at Cornell University, New York, NY, USA.

Jeffrey S Ross (JS)

Foundation Medicine, Cambridge, MA, USA.
Upstate University Hospital, Upstate Medical University, Syracuse, NY, USA.

Marieke van de Ven (M)

Mouse Clinic for Cancer and Aging, Netherlands Cancer Institute, Amsterdam, The Netherlands.

Sven Rottenberg (S)

Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
Bern Center for Precision Medicine, University of Bern, Bern, Switzerland.

Edwin Cuppen (E)

Oncode Institute, Utrecht, The Netherlands.
Hartwig Medical Foundation, Amsterdam, The Netherlands.
Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands.

Anne Vaslin Chessex (AV)

Debiopharm International, Lausanne, Switzerland.

Siraj M Ali (SM)

Foundation Medicine, Cambridge, MA, USA.

Timothy C Burn (TC)

Incyte Research Institute, Wilmington, DE, USA.

Connie R Jimenez (CR)

OncoProteomics Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.

Shridar Ganesan (S)

Department of Medicine, Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA. ganesash@cinj.rutgers.edu.
Department of Medicine and Pharmacology, Rutgers University, Piscataway, NJ, USA. ganesash@cinj.rutgers.edu.

Lodewyk F A Wessels (LFA)

Oncode Institute, Utrecht, The Netherlands. l.wessels@nki.nl.
Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands. l.wessels@nki.nl.

Jos Jonkers (J)

Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands. j.jonkers@nki.nl.
Oncode Institute, Utrecht, The Netherlands. j.jonkers@nki.nl.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH