A Ribonucleotide ↔ Phosphoramidate Reaction Network Optimized by Computer-Aided Design.
Journal
Journal of the American Chemical Society
ISSN: 1520-5126
Titre abrégé: J Am Chem Soc
Pays: United States
ID NLM: 7503056
Informations de publication
Date de publication:
24 08 2022
24 08 2022
Historique:
pubmed:
12
8
2022
medline:
26
8
2022
entrez:
11
8
2022
Statut:
ppublish
Résumé
A growing number of out-of-equilibrium systems have been created and investigated in chemical laboratories over the past decade. One way to achieve this is to create a reaction cycle, in which the forward reaction is driven by a chemical fuel and the backward reaction follows a different pathway. Such dissipative reaction networks are still relatively rare, however, and most non-enzymatic examples are based on the carbodiimide-driven generation of carboxylic acid anhydrides. In this work, we describe a dissipative reaction network that comprises the chemically fueled formation of phosphoramidates from natural ribonucleotides (e.g., GMP or AMP) and phosphoramidate hydrolysis as a mild backward reaction. Because the individual reactions are subject to a multitude of interconnected parameters, the software-assisted tool "Design of Experiments" (DoE) was a great asset for optimizing and understanding the network. One notable insight was the stark effect of the nucleophilic catalyst 1-ethylimidazole (EtIm) on the hydrolysis rate, which is reminiscent of the action of the histidine group in phosphoramidase enzymes (e.g., HINT1). We were also able to use the reaction cycle to generate transient self-assemblies, which were characterized by dynamic light scattering (DLS), confocal microscopy (CLSM), and cryogenic transmission electron microscopy (cryo-TEM). Because these compartments are based on prebiotically plausible building blocks, our findings may have relevance for origin-of-life scenarios.
Identifiants
pubmed: 35953065
doi: 10.1021/jacs.2c05861
pmc: PMC9413217
doi:
Substances chimiques
Amides
0
Phosphoric Acids
0
Ribonucleotides
0
phosphoramidic acid
9Q189608GB
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
15266-15274Références
Biochemistry. 2013 May 21;52(20):3588-600
pubmed: 23614568
Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):5798-802
pubmed: 7541136
Adv Mater. 2020 Oct;32(42):e2002629
pubmed: 32881127
Angew Chem Int Ed Engl. 2021 Sep 6;60(37):20120-20143
pubmed: 33704885
J Am Chem Soc. 2021 Mar 24;143(11):4414-4420
pubmed: 33705123
Angew Chem Int Ed Engl. 2022 Mar 21;61(13):e202116414
pubmed: 35072333
Nucleic Acids Res. 1995 Jul 25;23(14):2661-8
pubmed: 7651827
Sci Rep. 2019 Aug 6;9(1):11370
pubmed: 31388076
Nat Chem. 2019 Sep;11(9):779-788
pubmed: 31358919
J Am Chem Soc. 2004 Jun 30;126(25):7772-3
pubmed: 15212513
J Syst Chem. 2014;5:5
pubmed: 25558290
J Am Chem Soc. 2013 Nov 13;135(45):16789-92
pubmed: 24147566
Angew Chem Int Ed Engl. 2017 Jan 24;56(5):1224-1228
pubmed: 28000974
Proc Natl Acad Sci U S A. 2013 May 14;110(20):8030-5
pubmed: 23630280
Sci Rep. 2019 Dec 11;9(1):18808
pubmed: 31827164
Nat Commun. 2017 Jun 19;8:15899
pubmed: 28627512
Science. 2015 Sep 4;349(6252):1075-9
pubmed: 26339025
Sci Adv. 2019 Jul 19;5(7):eaaw0590
pubmed: 31334349
Biomacromolecules. 2018 Jul 9;19(7):2650-2656
pubmed: 29689161
Chem Commun (Camb). 2019 Feb 12;55(14):2086-2089
pubmed: 30694271
Bioconjug Chem. 2016 Sep 21;27(9):2206-13
pubmed: 27562353
Annu Rev Biophys Biomol Struct. 2000;29:545-76
pubmed: 10940259
Angew Chem Int Ed Engl. 2021 May 10;60(20):11344-11349
pubmed: 33689197
J Am Chem Soc. 2013 Jan 16;135(2):924-32
pubmed: 23252395
Nat Commun. 2018 May 23;9(1):2044
pubmed: 29795292
Nat Rev Neurosci. 2009 May;10(5):319-32
pubmed: 19377501
Nat Chem. 2021 Aug;13(8):751-757
pubmed: 34312504
Chemistry. 2012 Jan 16;18(3):857-68
pubmed: 22173724
Nat Chem. 2016 Jul;8(7):725-31
pubmed: 27325101
Angew Chem Int Ed Engl. 2019 Sep 9;58(37):13087-13092
pubmed: 31276284
Angew Chem Int Ed Engl. 2017 Jan 24;56(5):1219-1223
pubmed: 28000995
Chem Rev. 2014 Jan 8;114(1):285-366
pubmed: 24171674
Angew Chem Int Ed Engl. 2007;46(22):4166-8
pubmed: 17457789
Chem Commun (Camb). 2022 Jan 27;58(9):1284-1297
pubmed: 35014639
J Am Chem Soc. 2019 Jul 3;141(26):10481-10488
pubmed: 31180644
Nat Nanotechnol. 2015 Feb;10(2):111-9
pubmed: 25652169
J Am Chem Soc. 2020 Mar 4;142(9):4083-4087
pubmed: 32065526
Chem Sci. 2019 Dec 18;11(6):1518-1522
pubmed: 34084381
Angew Chem Int Ed Engl. 2021 Feb 8;60(6):2952-2957
pubmed: 33128282
Chem Soc Rev. 2017 May 9;46(9):2543-2554
pubmed: 28418049
Nat Nanotechnol. 2020 Oct;15(10):868-874
pubmed: 32690887
Angew Chem Int Ed Engl. 2012 Aug 13;51(33):8299-303
pubmed: 22777755
J Am Chem Soc. 2022 Mar 9;144(9):4254-4259
pubmed: 35230111
Adv Mater. 2018 Oct;30(41):e1706750
pubmed: 29520846
Chemistry. 2022 Mar 1;28(13):e202104116
pubmed: 35038189
Angew Chem Int Ed Engl. 2010 Jun 28;49(28):4825-8
pubmed: 20512834
Angew Chem Int Ed Engl. 2020 Aug 10;59(33):13807-13813
pubmed: 32384209
J Am Chem Soc. 2017 Aug 30;139(34):11949-11955
pubmed: 28777554
J Pharm Biomed Anal. 2011 Sep 10;56(2):141-58
pubmed: 21632194
Angew Chem Int Ed Engl. 2020 Nov 2;59(45):20154-20160
pubmed: 32757352
Angew Chem Int Ed Engl. 2020 Nov 9;59(46):20604-20611
pubmed: 32700406
Acc Chem Res. 2022 Jan 18;55(2):145-155
pubmed: 34964346
Science. 2019 Oct 4;366(6461):76-82
pubmed: 31604305
Angew Chem Int Ed Engl. 2021 Mar 22;60(13):7117-7125
pubmed: 33340387
Nature. 2022 Apr;604(7904):80-85
pubmed: 35388198
Nat Chem. 2022 Jul;14(7):728-738
pubmed: 35778564
Angew Chem Int Ed Engl. 2019 Jan 2;58(1):244-247
pubmed: 30395376