Distinct Reactivity Modes of a Copper Hydride Enabled by an Intramolecular Lewis Acid.


Journal

Journal of the American Chemical Society
ISSN: 1520-5126
Titre abrégé: J Am Chem Soc
Pays: United States
ID NLM: 7503056

Informations de publication

Date de publication:
24 08 2022
Historique:
pubmed: 13 8 2022
medline: 26 8 2022
entrez: 12 8 2022
Statut: ppublish

Résumé

We disclose a 1,4,7-triazacyclononane (TACN) ligand featuring an appended boron Lewis acid. Metalation with Cu(I) affords a series of tetrahedral complexes including a boron-capped cuprous hydride. We demonstrate distinct reactivity modes as a function of chemical oxidation: hydride transfer to CO

Identifiants

pubmed: 35960993
doi: 10.1021/jacs.2c02937
pmc: PMC10291504
mid: NIHMS1904032
doi:

Substances chimiques

Lewis Acids 0
Ligands 0
Copper 789U1901C5
Boron N9E3X5056Q

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

15038-15046

Subventions

Organisme : NIGMS NIH HHS
ID : R35 GM136360
Pays : United States

Références

J Am Chem Soc. 2013 May 22;135(20):7751-60
pubmed: 23617739
J Am Chem Soc. 2014 Jun 18;136(24):8799-803
pubmed: 24896663
Inorg Chem. 2019 Jan 22;58(2):1147-1154
pubmed: 30628782
Science. 2018 Mar 30;359(6383):1484-1489
pubmed: 29599235
J Inorg Biochem. 2012 Feb;107(1):129-43
pubmed: 22204943
Chem Commun (Camb). 2013 May 25;49(42):4782-4
pubmed: 23598425
Chem Rev. 2016 Aug 10;116(15):8655-92
pubmed: 27483171
Dalton Trans. 2016 Apr 14;45(14):6023-31
pubmed: 26215924
J Am Chem Soc. 2021 Jun 2;143(21):7903-7908
pubmed: 34004114
J Am Chem Soc. 2015 Jun 24;137(24):7747-53
pubmed: 26042355
J Am Chem Soc. 2017 Dec 20;139(50):18194-18197
pubmed: 29227655
J Am Chem Soc. 2008 Sep 10;130(36):11874-5
pubmed: 18702489
J Am Chem Soc. 2016 Aug 24;138(33):10378-81
pubmed: 27472301
Chem Rev. 2022 Jan 12;122(1):1-49
pubmed: 34928136
Inorg Chem. 2007 Jan 22;46(2):541-51
pubmed: 17279834
J Inorg Biochem. 2019 Dec;201:110821
pubmed: 31520877
Angew Chem Int Ed Engl. 2007;46(4):498-504
pubmed: 17072922
Angew Chem Int Ed Engl. 2014 Sep 8;53(37):9922-5
pubmed: 25044562
Chem Commun (Camb). 2019 Oct 1;55(79):11896-11899
pubmed: 31528878
Angew Chem Int Ed Engl. 2021 Mar 15;60(12):6752-6756
pubmed: 33348460
J Am Chem Soc. 2013 Mar 6;135(9):3403-6
pubmed: 23421523
Chem Commun (Camb). 2020 Nov 7;56(86):13105-13108
pubmed: 33016291
Science. 2000 Aug 11;289(5481):938-41
pubmed: 10937994
Acc Chem Res. 2008 Feb;41(2):349-58
pubmed: 18281951
Chem Rev. 2014 Apr 23;114(8):4366-469
pubmed: 24758379
Angew Chem Int Ed Engl. 2012 Aug 27;51(35):8830-3
pubmed: 22855369
Angew Chem Int Ed Engl. 2016 Aug 16;55(34):9927-31
pubmed: 27409068
Inorg Chem. 2016 Mar 21;55(6):3181-91
pubmed: 26959857
Inorg Chem. 2021 Sep 20;60(18):13806-13810
pubmed: 34242009
Inorg Chem. 2000 Sep 4;39(18):4059-72
pubmed: 11198861
J Am Chem Soc. 2019 Aug 21;141(33):13148-13157
pubmed: 31403298
J Am Chem Soc. 2013 Feb 13;135(6):2104-7
pubmed: 23360380
J Am Chem Soc. 2014 Jul 23;136(29):10262-5
pubmed: 25007258
Angew Chem Int Ed Engl. 2019 Feb 4;58(6):1818-1822
pubmed: 30536497
Inorg Chem. 2013 Nov 18;52(22):13282-7
pubmed: 24187908
Angew Chem Int Ed Engl. 2016 Jan 4;55(1):48-57
pubmed: 26661678
Angew Chem Int Ed Engl. 2004 Apr 19;43(17):2228-30
pubmed: 15108129
Chemistry. 2015 Jan 7;21(2):900-6
pubmed: 25382457
Chem Commun (Camb). 2016 Feb 4;52(10):2114-7
pubmed: 26692373
Dalton Trans. 2007 Mar 7;(9):955-64
pubmed: 17308676
Angew Chem Int Ed Engl. 2020 May 25;59(22):8645-8653
pubmed: 32022415
Chem Sci. 2021 Jul 29;12(34):11495-11505
pubmed: 34567502
Angew Chem Int Ed Engl. 2016 Dec 12;55(50):15539-15543
pubmed: 27862835
J Am Chem Soc. 2014 Feb 19;136(7):2699-702
pubmed: 24471779
Dalton Trans. 2013 Aug 21;42(31):11074-81
pubmed: 23799531
J Am Chem Soc. 2015 Nov 25;137(46):14606-9
pubmed: 26560687
Inorg Chem. 2016 Feb 1;55(3):1102-7
pubmed: 26789550
J Am Chem Soc. 2013 Nov 20;135(46):17262-5
pubmed: 24171656
Chem Rev. 2016 Aug 10;116(15):8318-72
pubmed: 27454444
Chem Sci. 2019 May 7;10(21):5539-5545
pubmed: 31293738
Chem Soc Rev. 2022 Mar 21;51(6):1861-1880
pubmed: 35188514
Chempluschem. 2018 Jul;83(7):554-564
pubmed: 31950634
Angew Chem Int Ed Engl. 2011 Feb 25;50(9):2063-7
pubmed: 21344552
J Am Chem Soc. 2017 Jun 14;139(23):7685-7688
pubmed: 28558233
J Am Chem Soc. 2014 Dec 17;136(50):17398-401
pubmed: 25470029
Dalton Trans. 2009 Aug 21;(31):6120-6
pubmed: 20449107
J Am Chem Soc. 2014 Apr 23;136(16):6031-6
pubmed: 24720359
Coord Chem Rev. 2011 Apr;255(7-8):920-937
pubmed: 21625302

Auteurs

Emily E Norwine (EE)

University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States.

John J Kiernicki (JJ)

University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States.

Matthias Zeller (M)

Herbert C. Brown Laboratory, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States.

Nathaniel K Szymczak (NK)

University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States.

Articles similaires

A molecular mechanism for bright color variation in parrots.

Roberto Arbore, Soraia Barbosa, Jindich Brejcha et al.
1.00
Animals Feathers Pigmentation Parrots Aldehyde Dehydrogenase
Receptor, Cannabinoid, CB1 Ligands Molecular Dynamics Simulation Protein Binding Thermodynamics
Osteosarcoma Animals Glutathione Oxidation-Reduction Mice
Humans Insulin Resistance Muscle, Skeletal Oxidative Stress Oxidation-Reduction

Classifications MeSH