Analysis of Aspergillus versicolor exudate composition.


Journal

Journal of basic microbiology
ISSN: 1521-4028
Titre abrégé: J Basic Microbiol
Pays: Germany
ID NLM: 8503885

Informations de publication

Date de publication:
Oct 2022
Historique:
revised: 20 07 2022
received: 25 03 2022
accepted: 23 07 2022
pubmed: 17 8 2022
medline: 5 10 2022
entrez: 16 8 2022
Statut: ppublish

Résumé

Aspergillus versicolor, a widely distributed fungus, is associated with pollution and carcinogenic hazards. This study aimed to examine the functions of the A. versicolor exudate and laid a scientific foundation for improving our understanding, utilization, and control of A. versicolor. The A. versicolor exudate proteome, ion content, and amino acid components were determined using label-free quantitation, atomic absorption spectrophotometry, and high-performance liquid chromatography, respectively. In total, 502 proteins were identified in the A. versicolor exudate. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and cluster of orthologous group analyses were used to annotate the functional classification and pathways of the aligned proteins. Proteins identified in the exudate were mainly enriched in carbohydrate metabolic process, translation, oxidoreductase activity, oxidoreductase activity, hydrolase activity, cell wall-related processes, catalytic activity, and unknown functions. The exudate comprised Na, K, Ca, Fe, and Mg cations. Among the 17 types of amino acids detected in the exudate, 7 were essential and 10 were nonessential. The exudate may be involved in the vital processes of A. versicolor. Additionally, the exudate may play an important role in the growth, development, reproduction, homeostasis, nutrient supply for regrowth, and virulence of A. versicolor.

Identifiants

pubmed: 35972830
doi: 10.1002/jobm.202200117
doi:

Substances chimiques

Amino Acids 0
Carbohydrates 0
Proteome 0
Oxidoreductases EC 1.-
Hydrolases EC 3.-

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1241-1253

Subventions

Organisme : Key research projects of Liaoning Provincial Department of Education
ID : LSNZD201902
Organisme : Earmarked fund for China Agriculture Research System
ID : CARS-01

Informations de copyright

© 2022 Wiley-VCH GmbH.

Références

Mehta KD, Das C, Pandey BD. Leaching of copper, nickel and cobalt from Indian Ocean manganese nodules by Aspergillus Niger. Hydrometallurgy. 2010;105:89-95.
Blachowicz A, Chiang AJ, Romsdahl J, Kalkum M, Wang CCC, Venkateswaran K. Proteomic characterization of Aspergillus fumigatus isolated from air and surfaces of the international space station. Fungal Genet Biol. 2019;124:39-46.
Saraswathi K, Vadamalaikrishnan K, Jayaraman P. The effect of chromium and herbicide on the growth of Aspergillus terreus isolated from soil environment. J Pure Appl Microbiol. 2020;14:2093-104.
Ukwatta KM, Lawrence JL, Wijayarathne CD. Antimicrobial, anti-cancer, anti-filarial and anti-inflammatory activities of cowabenzophenone A extracted from the endophytic fungus Aspergillus terreus isolated from a mangrove plant Bruguiera gymnorrhyza. Mycology. 2019;11:297-305.
Ola ARB, Soa CAP, Sugi Y, Cunha TD, Belli HLL, Lalel HJD. Antimicrobial metabolite from the endophytic fungi Aspergillus flavus isolated from Sonneratia alba, a mangrove plant of timor-Indonesia. Rasayan J Chem. 2020;13:377-81.
Abdelwahab MF, Kurtán T, Mándi A, Müller WEG, Fouad MA, Kamel MS, et al. Induced secondary metabolites from the endophytic fungus Aspergillus versicolor through bacterial co-culture and OSMAC approaches. Tetrahedron Lett. 2018;59:2647-52.
Balakrishnan M, Jeevarathinam G, Kumar SKS, Muniraj I, Uthandi S. Optimization and scale-up of α-amylase production by Aspergillus oryzae using solid-state fermentation of edible oil cakes. BMC Biotechnol. 2021;21:33.
Roehr M, Kubicek CP, Kominek J. Industrial acids and other small molecules. Biotechnology. 1992;23:91-131.
Berka RM, Dunn-Coleman N, Ward M. Industrial enzymes from aspergillus species. Biotechnology. 1992;23:155-202.
Rusdianti R, Azizah A, Utarti E, Wiyono HT, Muzakhar K. Cheap cellulase production by aspergillus sp. VTM1 through solid state fermentation of coffee pulp waste. Key Eng Mater. 2021;884:159-64.
Das SK, Das AR, Guha AK. A study on the adsorption mechanism of Mercury on Aspergillus versicolor biomass. Environ Sci Technol. 2007;41:8281-7.
Bairagi H, Khan MMR, Ray L, Guha AK. Adsorption profile of lead on Aspergillus versicolor: a mechanistic probing. J Hazard Mater. 2011;186:756-64.
Abdel-Wahab N, Scharf S, Özkaya F, Kurtán T, Mándi A, Fouad M, et al. Induction of secondary metabolites from the marine-derived fungus Aspergillus versicolor through co-cultivation with Bacillus subtilis. Planta Med. 2019;85:503-12.
Awad MF, El-Shenawy FS, El-Gendy MMAA, El-Bondkly EAM. Purification, characterization, and anticancer and antioxidant activities of l-glutaminase from Aspergillus versicolor Faesay4. Int Microbiol. 2021;24:169-81.
Shreadah MA, El Moneam NMA, El-Assar SA, Nabil-Adam A. Metabolomics and pharmacological screening of Aspergillus versicolor isolated from Hyrtios erectus red sea sponge, Egypt. Curr Bioact Compd. 2020;16:1083-2.
Guo ZY, Tan MH, Liu CX, Lv MM, Deng ZS, Cao F, et al. Aspergoterpenins A-D: four new antimicrobial bisabolane sesquiterpenoid derivatives from an endophytic fungus Aspergillus versicolor. Molecules. 2018;23:1291-301.
Pan C, Shi Y, Chen X, Chen CTA, Tao X, Wu B. New compounds from a hydrothermal vent crab-associated fungus Aspergillus versicolor XZ-4. Org Biomol Chem. 2017;15:1155-63.
Li H, Sun W, Deng M, Zhou Q, Wang J, Liu J, et al. Asperversiamides, linearly fused prenylated indole alkaloids from the marine-derived fungus Aspergillus versicolor. J Org Chem. 2018;83:8483-92.
Navale V, Vamkudoth KR, Ajmera S, Dhuri V. Aspergillus derived mycotoxins in food and the environment: prevalence, detection, and toxicity. Toxicol Rep. 2021;8:1008-30.
Maniam R, Selvarajah GT, Mazlan M, Than LTL. Pulmonary papillary adenocarcinoma with Aspergillus versicolor infection in a dog. Med Mycol Case Rep. 2017;19:25-9.
Versilovskis A, Bartkevics V, Mikelsone V. Analytical method for the determination of sterigmatocystin in grains using high-performance liquid chromatography-tandem mass spectrometry with electrospray positive ionization. J Chromatogr A. 2007;1157:467-71.
Versilovskis A, de Saeger S. Sterigmatocystin: occurrence in foodstuffs and analytical methods-an overview. Mol Nutr Food Res. 2010;54:136-47.
Viegas C, Nurme J, Piecková E, Viegas S. Sterigmatocystin in foodstuffs and feed: aspects to consider. Mycology. 2018;11:91-104.
Kito K, Ookura R, Yoshida S, Namikoshi M, Ooi T, Kusumi T. New cytotoxic 14-membered macrolides from marine-derived fungus Aspergillus ostianus. Org Lett. 2008;10:225-8.
Aliferis KA, Jabaji S. Metabolite composition and bioactivity of Rhizoctonia solani sclerotial exudates. J Agric Food Chem. 2010;58:7604-15.
Liang Y, Strelkov SE, Kav NNV. The proteome of liquid sclerotial exudates from Sclerotinia sclerotiorum. J Proteome Res. 2010;9:3290-8.
Wang D, Fu JF, Zhou RJ, Li ZB, Xie YJ. Proteomics research and related functional classification of liquid sclerotial exudates of Sclerotinia ginseng. PeerJ. 2017;5:e3979.
Wang H, Wei S, Yang X, Liu W, Zhu L. Proteomic analysis of exudate of Cercospora armoraciae from Armoracia rusticana. PeerJ. 2020;8:e9592.
Wang H, Yang X, Wei S, Wang Y. Proteomic analysis of mycelial exudates of Ustilaginoidea virens. Pathogens. 2021;10:364.
Hutwimmer S, Wang H, Strasser H, Burgstaller W. Formation of exudate droplets by Metarhizium anisopliae and the presence of destruxins. Mycologia. 2010;102:1-10.
Pandey MK, Sarma BK, Singh DP, Singh UP. Biochemical investigations of sclerotial exudates of Sclerotium rolfsii and their antifungal activity. J Phytopathol. 2007;155:84-9.
Colotelo N, Sumner JL, Voegelin WS. Chemical studies on the exudate and developing sclerotia of Sclerotinia sclerotiorum (lib.) de bary. Can J Microbiol. 1971;17:1189-94.
Wang D, Fu J, Zhou R, Li Z, Xie Y, Liu X, et al. Formation of sclerotia in Sclerotinia ginseng and composition of the sclerotial exudate. PeerJ. 2018;6:e6009.
Colotelo N. Fungal exudates. Can J Microbiol. 1978;24:1173-81.
Wu GY. Amino acids: biochemistry and nutrition. 1st ed. New York, United States: CRC Press; 2013. p. 378-84.
Fan G, Zhang K, Huang H, Zhang H, Zhao A, Chen L, et al. Multiprotein-bridging factor 1 regulates vegetative growth, osmotic stress, and virulence in Magnaporthe oryzae. Curr Genet. 2017;63:293-309.
Jain S, Wiemann P, Thill E, Williams B, Keller NP, Kabbage M. A Bcl-2 associated athanogene (bagA) modulates sexual development and secondary metabolism in the filamentous fungus Aspergillus nidulans. Front Microbiol. 2018;9:1316.
Ahn N, Kim S, Choi W, Im KH, Lee YH. Extracellular matrix protein gene, EMP1, is required for appressorium formation and pathogenicity of the rice blast fungus, Magnaporthe grisea. Mol Cells. 2004;17:166-73.
Izumitsu K, Kimura S, Kobayashi H, Morita A, Saitoh Y, Tanaka C. Class I hydrophobin BcHpb1 is important for adhesion but not for later infection of Botrytis cinerea. J Gen Plant Pathol. 2010;76:254-60.
Nesci A, Gsponer N, Etcheverry M. Natural maize phenolic acids for control of aflatoxigenic fungi on maize. J Food Sci. 2007;72:M180-5.
Ejechi BO, Nwafor OE, Okoko FJ. Growth inhibition of tomato-rot fungi by phenolic acids and essential oil extracts of pepperfruit (Dennetia tripetala). Food Res Int. 1999;32:395-9.
Li J, Huang SY, Deng Q, Li G, Su G, Liu J, et al. Extraction and characterization of phenolic compounds with antioxidant and antimicrobial activities from pickled radish. Food Chem Toxicol. 2020;136:111050.
Pavlović T, Dimkić I, Andrić S, Milojković-Opsenica D, Stanković S, Janaćković P, et al. Linden tea from Serbia-an insight into the phenolic profile, radical scavenging and antimicrobial activities. Ind Crops Prod. 2020;154:112639.
Wang XM, Zhang J, Li T, Wang YZ, Liu HG. Content and bioaccumulation of nine mineral elements in ten mushroom species of the genus Boletus. J Anal Methods Chem. 2015;2015:165412.
Husaini AM, Morimoto K, Chandrasekar B, Kelly S, Kaschani F, Palmero D, et al. Multiplex fluorescent, activity-based protein profiling identifies active α-glycosidases and other hydrolases in plants. Plant Physiol. 2018;177:24-37.
Lauter FR, Russo VE, Yanofsky C. Developmental and light regulation of eas, the structural gene for the rodlet protein of Neurospora. Genes Dev. 1992;6:2373-81.
Dobie F, Berg A, Boitz JM, Jardim A. Kinetic characterization of inosine monophosphate dehydrogenase of Leishmania donovani. Mol Biochem Parasitol. 2007;152:11-21.
da Mota PR, Ribeiro MS, de Castro Georg R, Silva GR, de Paula RG, Silva RN, Ulhoa CJ. Expression analysis of the α-1,2-mannosidase from the mycoparasitic fungus Trichoderma harzianum. Biol Control. 2016;95:1-4.
Hartland RP, Fontaine T, Debeaupuis JP, Simenel C, Delepierre M, Latgé JP. A novel-(1-3)-glucanosyltransferase from the cell wall of Aspergillus fumigatus. J Biol Chem. 1996;271:26843-9.
Cooke RC. Changes in soluble carbohydrates during sclerotium formation by Sclerotinia sclerotiorum and s. trifoliorum. Trans Br Mycol Soc. 1969;53:77-86.
Davis DJ, Burlak C, Money NP. Osmotic pressure of fungal compatible osmolytes. Mycol Res. 2000;104:800-4.
Lew RR. Turgor and net ion flux responses to activation of the osmotic MAP kinase cascade by fludioxonil in the filamentous fungus Neurospora crassa. Fungal Genet Biol. 2010;47:721-6.
Wallis IR, Claridge AW, Trappe JM. Nitrogen content, amino acid composition and digestibility of fungi from a nutritional perspective in animal mycophagy. Fungal Biol. 2012;116:590-602.
Garbe E, Vylkova S. Role of amino acid metabolism in the virulence of human pathogenic fungi. Curr Clin Microbiol Rep. 2019;6:108-9.
Lu X, Luo C, Xing J, Han Z, Li T, Wu W, et al. Optimization of storage conditions of the medicinal herb Ilex asprella against the sterigmatocystin producer Aspergillus versicolor using response surface methodology. Toxins. 2018;10:499.
Sbrana F, Bongini L, Cappugi G, Fanelli D, Guarino A, Pazzagli L, et al. Atomic force microscopy images suggest aggregation mechanism in cerato-platanin. Eur Biophys J. 2007;36:727-32.
Domínguez E, Heredia-Guerrero JA, Heredia A. Plant cutin genesis: unanswered questions. Trends Plant Sci. 2015;20:551-8.
Li M, Rollins JA. The development-specific protein (Ssp1) from Sclerotinia sclerotiorum is encoded by a novel gene expressed exclusively in sclerotium tissues. Mycologia. 2009;101:34-43.

Auteurs

Haining Wang (H)

Department of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning Province, China.

Xiaohe Yang (X)

Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, Heilongjiang Province, China.

Songhong Wei (S)

Department of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning Province, China.

Articles similaires

Aspergillus Hydrogen-Ion Concentration Coculture Techniques Secondary Metabolism Streptomyces rimosus

Aminoacid functionalised magnetite nanoparticles Fe

Spoială Angela, Motelica Ludmila, Ilie Cornelia-Ioana et al.
1.00
Magnetite Nanoparticles Tryptophan Biocompatible Materials Microbial Sensitivity Tests Humans

Brain malformations and seizures by impaired chaperonin function of TRiC.

Florian Kraft, Piere Rodriguez-Aliaga, Weimin Yuan et al.
1.00
Humans Chaperonin Containing TCP-1 Brain Seizures Protein Folding

Classifications MeSH