High-temperature ethanol fermentation from pineapple waste hydrolysate and gene expression analysis of thermotolerant yeast Saccharomyces cerevisiae.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
17 08 2022
Historique:
received: 06 06 2022
accepted: 08 08 2022
entrez: 17 8 2022
pubmed: 18 8 2022
medline: 20 8 2022
Statut: epublish

Résumé

High-temperature ethanol fermentation by thermotolerant yeast is considered a promising technology for ethanol production, especially in tropical and subtropical regions. In this study, optimization conditions for high-temperature ethanol fermentation of pineapple waste hydrolysate (PWH) using a newly isolated thermotolerant yeast, Saccharomyces cerevisiae HG1.1, and the expression of genes during ethanol fermentation at 40 °C were carried out. Three independent variables, including cell concentration, pH, and yeast extract, positively affected ethanol production from PWH at 40 °C. The optimum levels of these significant factors evaluated using response surface methodology (RSM) based on central composite design (CCD) were a cell concentration of 8.0 × 10

Identifiants

pubmed: 35978081
doi: 10.1038/s41598-022-18212-w
pii: 10.1038/s41598-022-18212-w
pmc: PMC9385605
doi:

Substances chimiques

Pyruvates 0
Ethanol 3K9958V90M

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

13965

Informations de copyright

© 2022. The Author(s).

Références

Appl Biochem Biotechnol. 2014 Jul;173(6):1495-510
pubmed: 24817554
EMBO J. 2016 Apr 1;35(7):743-58
pubmed: 26717941
Antonie Van Leeuwenhoek. 2013 Mar;103(3):577-88
pubmed: 23132277
Biotechnol Bioeng. 2017 Mar;114(3):620-631
pubmed: 27596631
Biotechnol Res Int. 2015;2015:132635
pubmed: 26881084
Biotechnol Biofuels. 2017 May 15;10:125
pubmed: 28515784
Front Microbiol. 2017 Jan 06;7:2087
pubmed: 28111566
Antonie Van Leeuwenhoek. 2015 Jul;108(1):173-90
pubmed: 25980834
3 Biotech. 2015 Aug;5(4):337-353
pubmed: 28324547
Microb Cell Fact. 2006 May 23;5:20
pubmed: 16719921
Front Microbiol. 2018 Feb 21;9:274
pubmed: 29515554
Bioresour Technol. 2014 Oct;169:742-749
pubmed: 25115598
Appl Environ Microbiol. 2005 May;71(5):2239-43
pubmed: 15870306
J Biol Chem. 2000 Apr 14;275(15):11075-81
pubmed: 10753912
Genetics. 2013 Apr;193(4):1025-64
pubmed: 23547164
Genes Dev. 2010 Sep 1;24(17):1903-13
pubmed: 20810648
Biochem Biophys Rep. 2017 Mar 06;10:52-61
pubmed: 29114570
Lett Appl Microbiol. 2014 May;58(5):478-85
pubmed: 24447289
Springerplus. 2013 Oct 31;2:583
pubmed: 25674412
Genes Genomics. 2018 Feb;40(2):137-150
pubmed: 29892925
Free Radic Res. 2014 Dec;48(12):1454-61
pubmed: 25184342
Biochim Biophys Acta. 2008 Jun;1780(6):892-8
pubmed: 18395524
Bioresour Technol. 2009 Sep;100(18):4176-82
pubmed: 19375908
Waste Manag. 2016 Jan;47(Pt A):46-61
pubmed: 26253329
Bioresour Technol. 2011 Sep;102(17):8099-104
pubmed: 21737262
Braz J Microbiol. 2017 Jul - Sep;48(3):461-475
pubmed: 28365094
Cold Spring Harb Perspect Biol. 2013 Feb 01;5(2):
pubmed: 23378590
Lett Appl Microbiol. 2016 Jan;62(1):75-83
pubmed: 26510181
Biotechnol Lett. 2017 Oct;39(10):1521-1527
pubmed: 28721580
J Agric Food Chem. 2014 May 21;62(20):4643-51
pubmed: 24802243
Biotechnol Lett. 2011 Mar;33(3):509-15
pubmed: 21063748
J Biotechnol. 2013 Jan 10;163(1):50-60
pubmed: 23131464
Bioresour Technol. 2011 Dec;102(24):11262-5
pubmed: 22014707
Appl Microbiol Biotechnol. 2010 Jan;85(4):861-7
pubmed: 19820925
Biotechnol Biofuels. 2015 Mar 18;8:47
pubmed: 25834639
Bioresour Technol. 2007 Dec;98(17):3367-74
pubmed: 17537627
Biophys J. 2012 Feb 8;102(3):507-16
pubmed: 22325273
Biosci Biotechnol Biochem. 2007 Feb;71(2):323-35
pubmed: 17284864
Yeast. 2003 Dec;20(16):1369-85
pubmed: 14663829
Bioresour Technol. 2017 Dec;245(Pt B):1447-1454
pubmed: 28554523
Waste Manag. 2011 Jul;31(7):1576-84
pubmed: 21376555
Mol Cell. 2010 Oct 22;40(2):253-66
pubmed: 20965420
Microb Biotechnol. 2017 Nov;10(6):1581-1590
pubmed: 28474425
Mutagenesis. 2015 Nov;30(6):841-9
pubmed: 26122113
Cell Rep. 2019 Dec 24;29(13):4593-4607.e8
pubmed: 31875563
BMC Microbiol. 2010 Jun 10;10:169
pubmed: 20537179
Science. 2006 Jan 27;311(5760):506-8
pubmed: 16439656

Auteurs

Huynh Xuan Phong (HX)

Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand.
Department of Microbial Biotechnology, Biotechnology Research and Development Institute, Can Tho University, Can Tho, 900000, Vietnam.

Preekamol Klanrit (P)

Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand.

Ngo Thi Phuong Dung (NTP)

Department of Microbial Biotechnology, Biotechnology Research and Development Institute, Can Tho University, Can Tho, 900000, Vietnam.

Sudarat Thanonkeo (S)

Walai Rukhavej Botanical Research Institute, Mahasarakham University, Maha Sarakham, 44150, Thailand.

Mamoru Yamada (M)

Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan.
Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, 753-8315, Japan.

Pornthap Thanonkeo (P)

Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand. portha@kku.ac.th.
Center for Alternative Energy Research and Development (AERD), Khon Kaen University, Khon Kaen, 40002, Thailand. portha@kku.ac.th.

Articles similaires

Saccharomyces cerevisiae Aldehydes Biotransformation Flavoring Agents Lipoxygenase
1.00
Saccharomyces cerevisiae Lysine Cell Nucleolus RNA, Ribosomal Saccharomyces cerevisiae Proteins
Metabolic Networks and Pathways Saccharomyces cerevisiae Computational Biology Synthetic Biology Computer Simulation

Classifications MeSH