A Conundrum of r-Protein Stability: Unbalanced Stoichiometry of r-Proteins during Stationary Phase in Escherichia coli.
proteomics
rRNA
ribosomal proteins
ribosomes
stationary phase
Journal
mBio
ISSN: 2150-7511
Titre abrégé: mBio
Pays: United States
ID NLM: 101519231
Informations de publication
Date de publication:
26 10 2022
26 10 2022
Historique:
pubmed:
19
8
2022
medline:
29
10
2022
entrez:
18
8
2022
Statut:
ppublish
Résumé
Bacterial ribosomes are composed of three rRNA and over 50 ribosomal protein (r-protein) molecules. r-proteins are essential for ribosome assembly and structural stability and also participate in almost all ribosome functions. Ribosomal components are present in stoichiometric amounts in the mature 70S ribosomes during exponential and early stationary growth phases. Ribosomes are degraded in stationary phase; however, the stability and fate of r-proteins during stationary growth phase are not known. In this study, we report a quantitative analysis of ribosomal components during extended stationary-phase growth in Escherichia coli. We show that (i) the quantity of ribosomes per cell mass decreases in stationary phase, (ii) 70S ribosomes contain r-proteins in stoichiometric amounts, (iii) 30S subunits are degraded faster than 50S subunits, (iv) the quantities of 21 r-proteins in the total proteome decrease during 14 days (short-lived r-proteins) concomitantly with the reduction of cellular RNA, and (e) 30 r-proteins are stable and form a pool of free r-proteins (stable r-proteins). Thus, r-proteins are present in nonstoichiometric amounts in the proteome of E. coli during the extended stationary phase.
Identifiants
pubmed: 35980033
doi: 10.1128/mbio.01873-22
pmc: PMC9601097
doi:
Substances chimiques
Proteome
0
Escherichia coli Proteins
0
Ribosomal Proteins
0
RNA, Ribosomal
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0187322Références
J Biol Chem. 2003 Nov 14;278(46):45041-4
pubmed: 12941949
Prog Mol Biol Transl Sci. 2009;85:369-91
pubmed: 19215777
J Mol Biol. 1996 Nov 1;263(3):396-410
pubmed: 8918596
Mol Microbiol. 2010 Feb;75(4):801-14
pubmed: 19968789
Annu Rev Genet. 2004;38:749-70
pubmed: 15568992
Nucleic Acids Res. 2015 Jan;43(1):661-73
pubmed: 25510494
Nat Biotechnol. 2008 Dec;26(12):1367-72
pubmed: 19029910
Mol Gen Genet. 1967;100(3):252-5
pubmed: 4869073
Mol Gen Genet. 1974 Mar 6;129(1):61-75
pubmed: 4600015
EMBO Rep. 2011 May;12(5):458-62
pubmed: 21460796
Crit Rev Biochem Mol Biol. 2005 Sep-Oct;40(5):243-67
pubmed: 16257826
J Bacteriol. 1986 May;166(2):439-45
pubmed: 2422153
Nat Commun. 2020 Jun 9;11(1):2900
pubmed: 32518240
ACS Chem Biol. 2012 Jun 15;7(6):1120-7
pubmed: 22489843
Biol Chem. 2013 Jul;394(7):845-55
pubmed: 23612597
Nat Biotechnol. 2016 Jan;34(1):104-10
pubmed: 26641532
Biochimie. 2019 Jan;156:79-91
pubmed: 30315853
Mol Microbiol. 2010 Feb;75(4):793-4
pubmed: 20025660
Mol Gen Genet. 1974;128(1):11-22
pubmed: 4595779
FEBS Lett. 1974 May 1;41(2):323-6
pubmed: 4605341
J Mol Biol. 1970 May 14;49(3):693-6
pubmed: 4916552
Nature. 2009 Oct 29;461(7268):1234-42
pubmed: 19838167
Microbiol Mol Biol Rev. 2007 Sep;71(3):477-94
pubmed: 17804668
Mol Gen Genet. 1975 Oct 3;140(3):253-74
pubmed: 1107798
J Mol Biol. 2017 Apr 7;429(7):1067-1080
pubmed: 28238762
Biochimie. 2013 Apr;95(4):643-58
pubmed: 23228516
J Biol Chem. 1975 Apr 25;250(8):3174-8
pubmed: 1091648
Biochimie. 2019 Jan;156:169-180
pubmed: 30359641
Mol Biosyst. 2012 Oct 30;8(12):3325-34
pubmed: 23090316
Elife. 2020 Sep 14;9:
pubmed: 32924932
RNA. 2009 May;15(5):977-83
pubmed: 19324965
Nat Methods. 2016 Sep;13(9):731-40
pubmed: 27348712
EcoSal Plus. 2008 Sep;3(1):
pubmed: 26443740
Science. 2010 Nov 19;330(6007):1099-102
pubmed: 21097934
J Bacteriol. 1974 Sep;119(3):736-47
pubmed: 4604283
J Mol Biol. 1974 Mar 25;84(1):185-95
pubmed: 4598364
Science. 2001 May 4;292(5518):883-96
pubmed: 11283358
Cell. 1986 Jan 17;44(1):197-205
pubmed: 2416474