Integrated genomics approaches identify transcriptional mediators and epigenetic responses to Afghan desert particulate matter in small airway epithelial cells.
Afghanistan
Alveolar Epithelial Cells
/ metabolism
Chromatin
/ metabolism
Epigenesis, Genetic
Genomics
/ methods
Military Deployment
Particulate Matter
/ toxicity
Respiratory Tract Diseases
/ epidemiology
Transcription Factors
/ genetics
Transposases
/ metabolism
Tumor Suppressor Protein p53
/ metabolism
deployment-related lung disease
particulate matter
transcription
Journal
Physiological genomics
ISSN: 1531-2267
Titre abrégé: Physiol Genomics
Pays: United States
ID NLM: 9815683
Informations de publication
Date de publication:
01 10 2022
01 10 2022
Historique:
pubmed:
6
9
2022
medline:
12
10
2022
entrez:
5
9
2022
Statut:
ppublish
Résumé
Military Deployment to Southwest Asia and Afghanistan and exposure to toxic airborne particulates have been associated with an increased risk of developing respiratory disease, collectively termed deployment-related respiratory diseases (DRRDs). Our knowledge about how particulates mediate respiratory disease is limited, precluding the appropriate recognition or management. Central to this limitation is the lack of understanding of how exposures translate into dysregulated cell identity with dysregulated transcriptional programs. The small airway epithelium is involved in both the pathobiology of DRRD and fine particulate matter deposition. To characterize small airway epithelial cell epigenetic and transcriptional responses to Afghan desert particulate matter (APM) and investigate the functional interactions of transcription factors that mediate these responses, we applied two genomics assays, the assay for transposase accessible chromatin with sequencing (ATAC-seq) and Precision Run-on sequencing (PRO-seq). We identified activity changes in a series of transcriptional pathways as candidate regulators of susceptibility to subsequent insults, including signal-dependent pathways, such as loss of cytochrome P450 or P53/P63, and lineage-determining transcription factors, such as GRHL2 loss or TEAD3 activation. We further demonstrated that TEAD3 activation was unique to APM exposure despite similar inflammatory responses when compared with wood smoke particle exposure and that P53/P63 program loss was uniquely positioned at the intersection of signal-dependent and lineage-determining transcriptional programs. Our results establish the utility of an integrated genomics approach in characterizing responses to exposures and identifying genomic targets for the advanced investigation of the pathogenesis of DRRD.
Identifiants
pubmed: 36062885
doi: 10.1152/physiolgenomics.00063.2022
pmc: PMC9550581
doi:
Substances chimiques
Chromatin
0
Particulate Matter
0
Transcription Factors
0
Tumor Suppressor Protein p53
0
Transposases
EC 2.7.7.-
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
389-401Subventions
Organisme : NHLBI NIH HHS
ID : R01 HL109557
Pays : United States
Références
J Biol Chem. 2021 Oct;297(4):101147
pubmed: 34520756
Tuberc Respir Dis (Seoul). 2020 Apr;83(2):116-121
pubmed: 32185911
Front Immunol. 2021 Mar 16;12:659761
pubmed: 33796120
JCI Insight. 2021 Jan 25;6(2):
pubmed: 33320836
Chem Res Toxicol. 2015 Nov 16;28(11):2104-11
pubmed: 26462088
Bioinformatics. 2010 Mar 15;26(6):841-2
pubmed: 20110278
Curr Opin Pulm Med. 2015 Mar;21(2):185-92
pubmed: 25575366
Toxicol Appl Pharmacol. 2020 Oct 1;404:115186
pubmed: 32777237
Expert Opin Ther Pat. 2018 Dec;28(12):867-873
pubmed: 30482112
Toxicol Sci. 2020 Apr 1;174(2):278-290
pubmed: 31944254
Bioinformatics. 2011 Apr 1;27(7):1017-8
pubmed: 21330290
Am J Respir Cell Mol Biol. 2013 Dec;49(6):978-88
pubmed: 23837456
Blood Adv. 2022 Jul 26;6(14):4147-4156
pubmed: 35413116
J Environ Sci (China). 2016 Sep;47:201-210
pubmed: 27593287
Mol Cell. 2021 Oct 7;81(19):3888-3903
pubmed: 34464593
Nat Protoc. 2009;4(1):44-57
pubmed: 19131956
Genome Biol. 2014;15(12):550
pubmed: 25516281
Onco Targets Ther. 2019 Apr 16;12:2903-2910
pubmed: 31289443
Nat Biotechnol. 2019 Aug;37(8):907-915
pubmed: 31375807
Nature. 2015 Jan 29;517(7536):616-20
pubmed: 25383540
DNA Repair (Amst). 2020 Nov;95:102952
pubmed: 32846356
J Biol Chem. 2014 Mar 21;289(12):8231-9
pubmed: 24500711
Patholog Res Int. 2011;2011:659603
pubmed: 21776342
Inhal Toxicol. 2008 Feb;20(4):423-33
pubmed: 18302050
Toxicol Res. 2014 Jun;30(2):71-5
pubmed: 25071915
Fed Pract. 2015 Jun;32(6):32-38
pubmed: 30766070
Toxicol Sci. 2018 Dec 01;166(2):345-353
pubmed: 30169750
Respir Res. 2010 Jan 21;11:7
pubmed: 20092634
Oncol Lett. 2018 May;15(5):7506-7514
pubmed: 29725457
Environ Int. 2015 Jan;74:136-43
pubmed: 25454230
Commun Biol. 2021 Jun 2;4(1):661
pubmed: 34079046
Genome Biol. 2008;9(9):R137
pubmed: 18798982
Eur Respir Rev. 2021 Jan 19;30(159):
pubmed: 33472958
Part Fibre Toxicol. 2020 Aug 14;17(1):41
pubmed: 32799885
Mol Cell. 2010 May 28;38(4):576-89
pubmed: 20513432
Occup Environ Med. 2012 Mar;69(3):170-5
pubmed: 21719562
J Biol Chem. 2022 Apr;298(4):101779
pubmed: 35231442
Front Endocrinol (Lausanne). 2018 Nov 16;9:680
pubmed: 30505291
Genome Res. 2019 Nov;29(11):1753-1765
pubmed: 31519741
J Virol. 2008 Apr;82(7):3236-49
pubmed: 18216092
Nat Biotechnol. 2011 Jan;29(1):24-6
pubmed: 21221095
Thorac Cancer. 2020 Mar;11(3):505-510
pubmed: 31975505
Bioinformatics. 2017 Jan 15;33(2):227-234
pubmed: 27663494
NPJ Regen Med. 2021 Mar 5;6(1):12
pubmed: 33674599
Nat Methods. 2017 Oct;14(10):959-962
pubmed: 28846090
Nucleic Acids Res. 2021 Dec 2;49(21):12196-12210
pubmed: 34850122
Cell Stem Cell. 2017 Feb 2;20(2):191-204.e5
pubmed: 27889319
Cell. 2018 Feb 8;172(4):650-665
pubmed: 29425488
Nucleic Acids Res. 2022 Jan 7;50(D1):D165-D173
pubmed: 34850907
FASEB J. 2021 Sep;35(9):e21816
pubmed: 34396583
Cell Death Differ. 2022 Jul 29;:
pubmed: 35906483
Trends Biochem Sci. 2017 Nov;42(11):862-872
pubmed: 28964625
Cancer Sci. 2004 Jan;95(1):1-6
pubmed: 14720319
Int J Environ Res Public Health. 2021 Nov 03;18(21):
pubmed: 34770082