Evaluation of Mutations Related to Streptomycin Resistance in Mycobacterium tuberculosis Clinical Isolates.


Journal

Current microbiology
ISSN: 1432-0991
Titre abrégé: Curr Microbiol
Pays: United States
ID NLM: 7808448

Informations de publication

Date de publication:
08 Oct 2022
Historique:
received: 22 06 2022
accepted: 14 09 2022
entrez: 8 10 2022
pubmed: 9 10 2022
medline: 12 10 2022
Statut: epublish

Résumé

Drug resistance to streptomycin in the clinical isolates of Mycobacterium tuberculosis (MTB) needs special consideration. It can mostly be caused by mutations in four genes with the names rpsL, rrs, gidB, and whiB7. The main objective of this study was the evaluation of the type and frequency of mutations in these mentioned genes using the PCR-sequencing method. This study was performed on 15 streptomycin-resistant and five streptomycin-sensitive isolates. Among resistant isolates, 11 samples contained mutations in codon 43 of the rpsL gene, which caused the lysine to be converted to arginine. Additionally, all of the isolates had mutations in the gidB. Missense mutations in codons 92 and 20 of this gene result in the amino acids Glutamic acid or Arginine being changed to Aspartic acid or Proline, respectively. No mutations in the rrs or whiB7 were found in any of the samples. Simultaneous mutations of rpsL and gidB were found in 10 isolates, the majority of which were Beijing strain. The results showed that the mutations of rpsL and gidB genes are mostly responsible for the streptomycin resistance in the evaluated MTB isolates. Furthermore, the discovery of dual mutations in Beijing strains highlights the strain's considerable potential for developing Tuberculosis drug resistance.

Identifiants

pubmed: 36209173
doi: 10.1007/s00284-022-03043-9
pii: 10.1007/s00284-022-03043-9
doi:

Substances chimiques

Glutamates 0
Aspartic Acid 30KYC7MIAI
Arginine 94ZLA3W45F
Proline 9DLQ4CIU6V
Lysine K3Z4F929H6
Streptomycin Y45QSO73OB

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

343

Subventions

Organisme : Golestan University of Medical Sciences
ID : IR.GOUMS.111209

Informations de copyright

© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Gagneux S (2018) Ecology and evolution of Mycobacterium tuberculosis. Nat Rev Microbiol 16(4):202
doi: 10.1038/nrmicro.2018.8 pubmed: 29456241
Reid MJ, Arinaminpathy N, Bloom A, Bloom BR, Boehme C, Chaisson R, Chin DP, Churchyard G, Cox H, Ditiu L (2019) Building a tuberculosis-free world: the lancet commission on tuberculosis. Lancet 393(10178):1331–1384
doi: 10.1016/S0140-6736(19)30024-8 pubmed: 30904263
World Health Organization (WHO) (2020) Global Tuberculosis Report 2020. https://www.who.int/publications/i/item/9789240013131
Paleckyte A, Dissanayake O, Mpagama S, Lipman MC, McHugh TD (2021) Reducing the risk of tuberculosis transmission for HCWs in high incidence settings. Antimicrob Resist Infect Control 10(1):1–11
doi: 10.1186/s13756-021-00975-y
Moore DA, Evans CA, Gilman RH, Caviedes L, Coronel J, Vivar A, Sanchez E, Piñedo Y, Saravia JC, Salazar C (2006) Microscopic-observation drug-susceptibility assay for the diagnosis of TB. N Engl J Med 355(15):1539–1550
doi: 10.1056/NEJMoa055524 pubmed: 17035648 pmcid: 1780278
Miotto P, Zhang Y, Cirillo DM, Yam WC (2018) Drug resistance mechanisms and drug susceptibility testing for tuberculosis. Respirology 23(12):1098–1113
doi: 10.1111/resp.13393 pubmed: 30189463
Gaude GS, Hattiholli J, Kumar P (2014) Risk factors and drug-resistance patterns among pulmonary tuberculosis patients in northern Karnataka region, India. Niger Med J 55(4):327
doi: 10.4103/0300-1652.137194 pubmed: 25114369 pmcid: 4124547
World Health Organization (WHO) (2008) WHO/IUATLD global project on anti-tuberculosis drug resistance surveillance. https://apps.who.int/iris/bitstream/handle/10665/43831/9789241563543_eng.pdf?sequence=1
Kerantzas CA, Jacobs WR (2017) Origins of combination therapy for tuberculosis: lessons for future antimicrobial development and application. MBio. https://doi.org/10.1128/mBio.01586-16
doi: 10.1128/mBio.01586-16 pubmed: 28292983 pmcid: 5350467
Karimi S, Mirhendi H, Zaniani FR, Manesh SE, Salehi M, Esfahani BN (2017) Rapid Detection of streptomycin-Resistant Mycobacterium tuberculosis by rpsL-restriction fragment length polymorphism. Adv biomed res. https://doi.org/10.4103/abr.abr_240_16
doi: 10.4103/abr.abr_240_16 pubmed: 29387669 pmcid: 5767803
Jagielski T, Ignatowska H, Bakuła Z, Dziewit Ł, Napiórkowska A, Augustynowicz-Kopeć E, Zwolska Z, Bielecki J (2014) Screening for streptomycin resistance-conferring mutations in Mycobacterium tuberculosis clinical isolates from Poland. PLoS ONE 9(6):e100078
doi: 10.1371/journal.pone.0100078 pubmed: 24937123 pmcid: 4061058
Okamoto S, Tamaru A, Nakajima C, Nishimura K, Tanaka Y, Tokuyama S, Suzuki Y, Ochi K (2007) Loss of a conserved 7-methylguanosine modification in 16S rRNA confers low-level streptomycin resistance in bacteria. Mol Microbiol 63(4):1096–1106
doi: 10.1111/j.1365-2958.2006.05585.x pubmed: 17238915
Bwalya P, Yamaguchi T, Solo ES, Chizimu JY, Mbulo G, Nakajima C, Suzuki Y (2021) Characterization of mutations associated with streptomycin resistance in multidrug-resistant Mycobacterium tuberculosis in Zambia. Antibiotics 10(10):1169
doi: 10.3390/antibiotics10101169 pubmed: 34680750 pmcid: 8532810
Wang Y, Li Q, Gao H, Zhang Z, Liu Y, Lu J, Dai E (2019) The roles of rpsL, rrs, and gidB mutations in predicting streptomycin-resistant drugs used on clinical Mycobacterium tuberculosis isolates from Hebei Province. China Int J Clin Exp Pathol 12(7):2713
pubmed: 31934102
Tudó G, Rey E, Borrell S, Alcaide F, Codina G, Coll P, Martín-Casabona N, Montemayor M, Moure R, Orcau A (2010) Characterization of mutations in streptomycin-resistant Mycobacterium tuberculosis clinical isolates in the area of Barcelona. J Antimicrob Chemother 65(11):2341–2346
doi: 10.1093/jac/dkq322 pubmed: 20802233
Reeves AZ, Campbell PJ, Sultana R, Malik S, Murray M, Plikaytis BB, Shinnick TM, Posey JE (2013) Aminoglycoside cross-resistance in Mycobacterium tuberculosis due to mutations in the 5′ untranslated region of whiB7. Antimicrob Agents Chemother 57(4):1857–1865
doi: 10.1128/AAC.02191-12 pubmed: 23380727 pmcid: 3623337
Villellas C, Aristimuño L, Vitoria M-A, Prat C, Blanco S, de Viedma DG, Domínguez J, Samper S, Aínsa JA (2013) Analysis of mutations in streptomycin-resistant strains reveals a simple and reliable genetic marker for identification of the Mycobacterium tuberculosis Beijing genotype. J Clin Microbiol 51(7):2124–2130
doi: 10.1128/JCM.01944-12 pubmed: 23616454 pmcid: 3697671
Shafipour M, Shirzad-Aski H, Ghaemi EA, Sohrabi A, Babaii Kochaksaraei M, Taziki M, Rahimi S, Ghazvini K, Baei B (2021) Mycobacterium tuberculosis typing using allele-specific oligonucleotide multiplex PCR (ASO–PCR) method. Curr Microbiol 8(12):4009–4013
doi: 10.1007/s00284-021-02659-7
Supply P, Allix C, Lesjean S, Cardoso-Oelemann M, Rüsch-Gerdes S, Willery E, Savine E, De Haas P, Van Deutekom H, Roring S (2006) Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis. J Clin Microbiol 44(12):4498–4510
doi: 10.1128/JCM.01392-06 pubmed: 17005759 pmcid: 1698431
World Health Organization (WHO) Dose optimization of rifampicin, isoniazid, pyrazinamide and ethambutol in the treatment of drug-susceptible tuberculosis. https://www.who.int/docs/default-source/hq-tuberculosis/dose-optimization-concept-note.pdf?sfvrsn=934ab3e2_2
The Centers for Disease Control and Prevention (CDC) (2022) Surveillance definitions for extensively drug resistant (XDR) and pre-XDR tuberculosis. CDC. https://www.cdc.gov/tb/publications/letters/2022/surv-def-xdr.html
Hlaing YM, Tongtawe P, Tapchaisri P, Thanongsaksrikul J, Thawornwan U, Archanachan B, Srimanote P (2017) Mutations in streptomycin resistance genes and their relationship to streptomycin resistance and lineage of Mycobacterium tuberculosis Thai isolates. Tuberc Respir Dis 80(2):159
doi: 10.4046/trd.2017.80.2.159
World Health Organization (2019) WHO consolidated guidelines on drug-resistant tuberculosis treatment (No. WHO/CDS/TB/2019.7). World Health Organization
Cohen KA, Stott KE, Munsamy V, Manson AL, Earl AM, Pym AS (2020) Evidence for expanding the role of streptomycin in the management of drug-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother 64(9):e00860-e820
doi: 10.1128/AAC.00860-20 pubmed: 32540971 pmcid: 7449167
Shrestha D, Maharjan B, Oo NAT, Isoda N, Nakajima C, Suzuki Y (2020) Molecular analysis of streptomycin-resistance associating genes in Mycobacterium tuberculosis isolates from Nepal. Tuberculosis 125:101985
doi: 10.1016/j.tube.2020.101985 pubmed: 32829153
Khosravi AD, Etemad N, Hashemzadeh M, Dezfuli SK, Goodarzi H (2017) Frequency of rrs and rpsL mutations in streptomycin-resistant Mycobacterium tuberculosis isolates from Iranian patients. J Glob Antimicrob Resist 9:51–56
doi: 10.1016/j.jgar.2017.01.005 pubmed: 28404234
Nhu N, Lan N, Phuong N, van Chau NV, Farrar J, Caws M (2012) Association of streptomycin resistance mutations with level of drug resistance and Mycobacterium tuberculosis genotypes. Int J Tuberc Lung Dis 16(4):527–531
doi: 10.5588/ijtld.11.0202 pubmed: 22640514
Zhao L-l, Liu H-c, Sun Q, Xiao T-y, Zhao X-q, Li G-l, Zeng C-y, Wan K-l (2015) Identification of mutations conferring streptomycin resistance in multidrug-resistant tuberculosis of China. Diagn Microbiol Infect Dis 83(2):150–153
doi: 10.1016/j.diagmicrobio.2015.06.020 pubmed: 26254141
Sun Y-J, Luo J-T, Wong S-Y, Lee A (2010) Analysis of rpsL and rrs mutations in Beijing and non-Beijing streptomycin-resistant Mycobacterium tuberculosis isolates from Singapore. Clin Microbiol Infect 16(3):287–289
doi: 10.1111/j.1469-0691.2009.02800.x pubmed: 19519851
Smittipat N, Juthayothin T, Billamas P, Jaitrong S, Rukseree K, Dokladda K, Chaiyasirinroje B, Disratthakit A, Chaiprasert A, Mahasirimongkol S (2016) Mutations in rrs, rpsL and gidB in streptomycin-resistant Mycobacterium tuberculosis isolates from Thailand. J Glob Antimicrob Resist 4:5–10
doi: 10.1016/j.jgar.2015.11.009 pubmed: 27436385
Sun H, Zhang C, Xiang L, Pi R, Guo Z, Zheng C, Li S, Zhao Y, Tang K, Luo M (2016) Characterization of mutations in streptomycin-resistant Mycobacterium tuberculosis isolates in Sichuan, China and the association between Beijing-lineage and dual-mutation in gidB. Tuberculosis 96:102–106
doi: 10.1016/j.tube.2015.09.004 pubmed: 26786661

Auteurs

Maryam Shafipour (M)

Infectious Diseases Research Center, Golestan University of Medical Sciences, 49341-74515, Gorgan, Iran.
Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran.

Hesamaddin Shirzad-Aski (H)

Infectious Diseases Research Center, Golestan University of Medical Sciences, 49341-74515, Gorgan, Iran.

Abdolmajid Mohammadzadeh (A)

Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran.

Kiarash Ghazvini (K)

Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.

Samin Zamani (S)

Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran.

Pezhman Mahmoodi Koohi (PM)

Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran.

Sayeh Ghaemi (S)

Faculty of Veterinary, Islamic Azad University, Babol Branch, Babol, Iran.

Ezzat Allah Ghaemi (EA)

Infectious Diseases Research Center, Golestan University of Medical Sciences, 49341-74515, Gorgan, Iran. eghaemi@yahoo.com.

Articles similaires

Vancomycin Polyesters Anti-Bacterial Agents Models, Theoretical Drug Liberation
Biofilms Candida albicans Quorum Sensing Candida glabrata Menthol
1.00
Saccharomyces cerevisiae Lysine Cell Nucleolus RNA, Ribosomal Saccharomyces cerevisiae Proteins

Naturally derived 3-aminoquinuclidine salts as new promising therapeutic agents.

Doris Crnčević, Alma Ramić, Andreja Radman Kastelic et al.
1.00
Humans Microbial Sensitivity Tests Anti-Bacterial Agents Biofilms Quinuclidines

Classifications MeSH