Evaluation of Mutations Related to Streptomycin Resistance in Mycobacterium tuberculosis Clinical Isolates.
Journal
Current microbiology
ISSN: 1432-0991
Titre abrégé: Curr Microbiol
Pays: United States
ID NLM: 7808448
Informations de publication
Date de publication:
08 Oct 2022
08 Oct 2022
Historique:
received:
22
06
2022
accepted:
14
09
2022
entrez:
8
10
2022
pubmed:
9
10
2022
medline:
12
10
2022
Statut:
epublish
Résumé
Drug resistance to streptomycin in the clinical isolates of Mycobacterium tuberculosis (MTB) needs special consideration. It can mostly be caused by mutations in four genes with the names rpsL, rrs, gidB, and whiB7. The main objective of this study was the evaluation of the type and frequency of mutations in these mentioned genes using the PCR-sequencing method. This study was performed on 15 streptomycin-resistant and five streptomycin-sensitive isolates. Among resistant isolates, 11 samples contained mutations in codon 43 of the rpsL gene, which caused the lysine to be converted to arginine. Additionally, all of the isolates had mutations in the gidB. Missense mutations in codons 92 and 20 of this gene result in the amino acids Glutamic acid or Arginine being changed to Aspartic acid or Proline, respectively. No mutations in the rrs or whiB7 were found in any of the samples. Simultaneous mutations of rpsL and gidB were found in 10 isolates, the majority of which were Beijing strain. The results showed that the mutations of rpsL and gidB genes are mostly responsible for the streptomycin resistance in the evaluated MTB isolates. Furthermore, the discovery of dual mutations in Beijing strains highlights the strain's considerable potential for developing Tuberculosis drug resistance.
Identifiants
pubmed: 36209173
doi: 10.1007/s00284-022-03043-9
pii: 10.1007/s00284-022-03043-9
doi:
Substances chimiques
Glutamates
0
Aspartic Acid
30KYC7MIAI
Arginine
94ZLA3W45F
Proline
9DLQ4CIU6V
Lysine
K3Z4F929H6
Streptomycin
Y45QSO73OB
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
343Subventions
Organisme : Golestan University of Medical Sciences
ID : IR.GOUMS.111209
Informations de copyright
© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Gagneux S (2018) Ecology and evolution of Mycobacterium tuberculosis. Nat Rev Microbiol 16(4):202
doi: 10.1038/nrmicro.2018.8
pubmed: 29456241
Reid MJ, Arinaminpathy N, Bloom A, Bloom BR, Boehme C, Chaisson R, Chin DP, Churchyard G, Cox H, Ditiu L (2019) Building a tuberculosis-free world: the lancet commission on tuberculosis. Lancet 393(10178):1331–1384
doi: 10.1016/S0140-6736(19)30024-8
pubmed: 30904263
World Health Organization (WHO) (2020) Global Tuberculosis Report 2020. https://www.who.int/publications/i/item/9789240013131
Paleckyte A, Dissanayake O, Mpagama S, Lipman MC, McHugh TD (2021) Reducing the risk of tuberculosis transmission for HCWs in high incidence settings. Antimicrob Resist Infect Control 10(1):1–11
doi: 10.1186/s13756-021-00975-y
Moore DA, Evans CA, Gilman RH, Caviedes L, Coronel J, Vivar A, Sanchez E, Piñedo Y, Saravia JC, Salazar C (2006) Microscopic-observation drug-susceptibility assay for the diagnosis of TB. N Engl J Med 355(15):1539–1550
doi: 10.1056/NEJMoa055524
pubmed: 17035648
pmcid: 1780278
Miotto P, Zhang Y, Cirillo DM, Yam WC (2018) Drug resistance mechanisms and drug susceptibility testing for tuberculosis. Respirology 23(12):1098–1113
doi: 10.1111/resp.13393
pubmed: 30189463
Gaude GS, Hattiholli J, Kumar P (2014) Risk factors and drug-resistance patterns among pulmonary tuberculosis patients in northern Karnataka region, India. Niger Med J 55(4):327
doi: 10.4103/0300-1652.137194
pubmed: 25114369
pmcid: 4124547
World Health Organization (WHO) (2008) WHO/IUATLD global project on anti-tuberculosis drug resistance surveillance. https://apps.who.int/iris/bitstream/handle/10665/43831/9789241563543_eng.pdf?sequence=1
Kerantzas CA, Jacobs WR (2017) Origins of combination therapy for tuberculosis: lessons for future antimicrobial development and application. MBio. https://doi.org/10.1128/mBio.01586-16
doi: 10.1128/mBio.01586-16
pubmed: 28292983
pmcid: 5350467
Karimi S, Mirhendi H, Zaniani FR, Manesh SE, Salehi M, Esfahani BN (2017) Rapid Detection of streptomycin-Resistant Mycobacterium tuberculosis by rpsL-restriction fragment length polymorphism. Adv biomed res. https://doi.org/10.4103/abr.abr_240_16
doi: 10.4103/abr.abr_240_16
pubmed: 29387669
pmcid: 5767803
Jagielski T, Ignatowska H, Bakuła Z, Dziewit Ł, Napiórkowska A, Augustynowicz-Kopeć E, Zwolska Z, Bielecki J (2014) Screening for streptomycin resistance-conferring mutations in Mycobacterium tuberculosis clinical isolates from Poland. PLoS ONE 9(6):e100078
doi: 10.1371/journal.pone.0100078
pubmed: 24937123
pmcid: 4061058
Okamoto S, Tamaru A, Nakajima C, Nishimura K, Tanaka Y, Tokuyama S, Suzuki Y, Ochi K (2007) Loss of a conserved 7-methylguanosine modification in 16S rRNA confers low-level streptomycin resistance in bacteria. Mol Microbiol 63(4):1096–1106
doi: 10.1111/j.1365-2958.2006.05585.x
pubmed: 17238915
Bwalya P, Yamaguchi T, Solo ES, Chizimu JY, Mbulo G, Nakajima C, Suzuki Y (2021) Characterization of mutations associated with streptomycin resistance in multidrug-resistant Mycobacterium tuberculosis in Zambia. Antibiotics 10(10):1169
doi: 10.3390/antibiotics10101169
pubmed: 34680750
pmcid: 8532810
Wang Y, Li Q, Gao H, Zhang Z, Liu Y, Lu J, Dai E (2019) The roles of rpsL, rrs, and gidB mutations in predicting streptomycin-resistant drugs used on clinical Mycobacterium tuberculosis isolates from Hebei Province. China Int J Clin Exp Pathol 12(7):2713
pubmed: 31934102
Tudó G, Rey E, Borrell S, Alcaide F, Codina G, Coll P, Martín-Casabona N, Montemayor M, Moure R, Orcau A (2010) Characterization of mutations in streptomycin-resistant Mycobacterium tuberculosis clinical isolates in the area of Barcelona. J Antimicrob Chemother 65(11):2341–2346
doi: 10.1093/jac/dkq322
pubmed: 20802233
Reeves AZ, Campbell PJ, Sultana R, Malik S, Murray M, Plikaytis BB, Shinnick TM, Posey JE (2013) Aminoglycoside cross-resistance in Mycobacterium tuberculosis due to mutations in the 5′ untranslated region of whiB7. Antimicrob Agents Chemother 57(4):1857–1865
doi: 10.1128/AAC.02191-12
pubmed: 23380727
pmcid: 3623337
Villellas C, Aristimuño L, Vitoria M-A, Prat C, Blanco S, de Viedma DG, Domínguez J, Samper S, Aínsa JA (2013) Analysis of mutations in streptomycin-resistant strains reveals a simple and reliable genetic marker for identification of the Mycobacterium tuberculosis Beijing genotype. J Clin Microbiol 51(7):2124–2130
doi: 10.1128/JCM.01944-12
pubmed: 23616454
pmcid: 3697671
Shafipour M, Shirzad-Aski H, Ghaemi EA, Sohrabi A, Babaii Kochaksaraei M, Taziki M, Rahimi S, Ghazvini K, Baei B (2021) Mycobacterium tuberculosis typing using allele-specific oligonucleotide multiplex PCR (ASO–PCR) method. Curr Microbiol 8(12):4009–4013
doi: 10.1007/s00284-021-02659-7
Supply P, Allix C, Lesjean S, Cardoso-Oelemann M, Rüsch-Gerdes S, Willery E, Savine E, De Haas P, Van Deutekom H, Roring S (2006) Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis. J Clin Microbiol 44(12):4498–4510
doi: 10.1128/JCM.01392-06
pubmed: 17005759
pmcid: 1698431
World Health Organization (WHO) Dose optimization of rifampicin, isoniazid, pyrazinamide and ethambutol in the treatment of drug-susceptible tuberculosis. https://www.who.int/docs/default-source/hq-tuberculosis/dose-optimization-concept-note.pdf?sfvrsn=934ab3e2_2
The Centers for Disease Control and Prevention (CDC) (2022) Surveillance definitions for extensively drug resistant (XDR) and pre-XDR tuberculosis. CDC. https://www.cdc.gov/tb/publications/letters/2022/surv-def-xdr.html
Hlaing YM, Tongtawe P, Tapchaisri P, Thanongsaksrikul J, Thawornwan U, Archanachan B, Srimanote P (2017) Mutations in streptomycin resistance genes and their relationship to streptomycin resistance and lineage of Mycobacterium tuberculosis Thai isolates. Tuberc Respir Dis 80(2):159
doi: 10.4046/trd.2017.80.2.159
World Health Organization (2019) WHO consolidated guidelines on drug-resistant tuberculosis treatment (No. WHO/CDS/TB/2019.7). World Health Organization
Cohen KA, Stott KE, Munsamy V, Manson AL, Earl AM, Pym AS (2020) Evidence for expanding the role of streptomycin in the management of drug-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother 64(9):e00860-e820
doi: 10.1128/AAC.00860-20
pubmed: 32540971
pmcid: 7449167
Shrestha D, Maharjan B, Oo NAT, Isoda N, Nakajima C, Suzuki Y (2020) Molecular analysis of streptomycin-resistance associating genes in Mycobacterium tuberculosis isolates from Nepal. Tuberculosis 125:101985
doi: 10.1016/j.tube.2020.101985
pubmed: 32829153
Khosravi AD, Etemad N, Hashemzadeh M, Dezfuli SK, Goodarzi H (2017) Frequency of rrs and rpsL mutations in streptomycin-resistant Mycobacterium tuberculosis isolates from Iranian patients. J Glob Antimicrob Resist 9:51–56
doi: 10.1016/j.jgar.2017.01.005
pubmed: 28404234
Nhu N, Lan N, Phuong N, van Chau NV, Farrar J, Caws M (2012) Association of streptomycin resistance mutations with level of drug resistance and Mycobacterium tuberculosis genotypes. Int J Tuberc Lung Dis 16(4):527–531
doi: 10.5588/ijtld.11.0202
pubmed: 22640514
Zhao L-l, Liu H-c, Sun Q, Xiao T-y, Zhao X-q, Li G-l, Zeng C-y, Wan K-l (2015) Identification of mutations conferring streptomycin resistance in multidrug-resistant tuberculosis of China. Diagn Microbiol Infect Dis 83(2):150–153
doi: 10.1016/j.diagmicrobio.2015.06.020
pubmed: 26254141
Sun Y-J, Luo J-T, Wong S-Y, Lee A (2010) Analysis of rpsL and rrs mutations in Beijing and non-Beijing streptomycin-resistant Mycobacterium tuberculosis isolates from Singapore. Clin Microbiol Infect 16(3):287–289
doi: 10.1111/j.1469-0691.2009.02800.x
pubmed: 19519851
Smittipat N, Juthayothin T, Billamas P, Jaitrong S, Rukseree K, Dokladda K, Chaiyasirinroje B, Disratthakit A, Chaiprasert A, Mahasirimongkol S (2016) Mutations in rrs, rpsL and gidB in streptomycin-resistant Mycobacterium tuberculosis isolates from Thailand. J Glob Antimicrob Resist 4:5–10
doi: 10.1016/j.jgar.2015.11.009
pubmed: 27436385
Sun H, Zhang C, Xiang L, Pi R, Guo Z, Zheng C, Li S, Zhao Y, Tang K, Luo M (2016) Characterization of mutations in streptomycin-resistant Mycobacterium tuberculosis isolates in Sichuan, China and the association between Beijing-lineage and dual-mutation in gidB. Tuberculosis 96:102–106
doi: 10.1016/j.tube.2015.09.004
pubmed: 26786661