Common microgeographical selection patterns revealed in four European conifers.
adaptive divergence
forests
local adaptation
natural selection
plants
Journal
Molecular ecology
ISSN: 1365-294X
Titre abrégé: Mol Ecol
Pays: England
ID NLM: 9214478
Informations de publication
Date de publication:
01 2023
01 2023
Historique:
revised:
06
09
2022
received:
28
01
2022
accepted:
11
10
2022
pubmed:
28
10
2022
medline:
11
1
2023
entrez:
27
10
2022
Statut:
ppublish
Résumé
Microgeographical adaptation occurs when the effects of directional selection persist despite gene flow. Traits and genetic loci under selection can then show adaptive divergence, against the backdrop of little differentiation at other traits or loci. How common such events are and how strong the selection is that underlies them remain open questions. Here, we discovered and analysed microgeographical patterns of genomic divergence in four European and Mediterranean conifers with widely differing life-history traits and ecological requirements (Abies alba MIll., Cedrus atlantica [Endl.] Manetti, Pinus halepensis Mill. and Pinus pinaster Aiton) by screening pairs from geographically close forest stands sampled along steep ecological gradients. We inferred patterns of genomic divergence by applying a combination of divergence outlier detection methods, demographic modelling, Approximate Bayesian Computation inferences and genomic annotation to genomic data. Surprisingly for such small geographical scales, we showed that selection is strong in all species but generally affects different loci in each. A clear signature of selection was systematically detected on a fraction of the genome, of the order of 0.1%-1% of the loci depending on the species. The novel modelling method we designed for estimating selection coefficients showed that the microgeographical selection coefficient scaled by population size (Ns) was 2-30. Our results convincingly suggest that selection maintains within-population diversity at microgeographical scales in spatially heterogeneous environments. Such genetic diversity is likely to be a major reservoir of adaptive potential, helping populations to adapt under fluctuating environmental conditions.
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
393-411Informations de copyright
© 2022 John Wiley & Sons Ltd.
Références
Alexa, A., & Rahnenfuhrer, J. (2019). topGO: Enrichment analysis for gene ontology. R package version 2.36.0. https://bioconductor.org/packages/release/bioc/html/topGO.html
Alves da Silva, D., Tsai, S. M., Chiorato, A. F., da Silva Andrade, S. C., de Fatima Esteves, J. A., Recchia, G. H., & Morais Carbonell, S. A. (2019). Analysis of the common bean (Phaseolus vulgaris L.) transcriptome regarding efficiency of phosphorus use. PLoS One, 14, 1-27. https://doi.org/10.1371/journal.pone.0210428
Antonovics, J. (1968). Evolution in closely adjacent plant populations VI. Manifold effects of gene flow. Heredity, 23, 508-524. https://doi.org/10.1038/hdy.1968.70
Antonovics, J. (2006). Evolution in closely adjacent plant populations X: Long-term persistence of prereproductive isolation at a mine boundary. Heredity, 97, 33-37. https://doi.org/10.1038/sj.hdy.6800835
Audigeos, D., Brousseau, L., Traissac, S., Scotti-Saintagne, C., & Scotti, I. (2013). Molecular divergence in tropical tree populations occupying environmental mosaics. Journal of Evolutionary Biology, 26, 529-544. https://doi.org/10.1111/jeb.12069
Babik, W., Butlin, R. K., Baker, W. J., Papadopulos, A. S. T., Boulesteix, M., Anstett, M.-C., Lexer, C., Hutton, I., & Savolainen, V. (2009). How sympatric is speciation in the Howea palms of Lord Howe Island? Molecular Ecology, 18, 3629-3638. https://doi.org/10.1111/j.1365-294X.2009.04306.x
Beaumont, M. A., Zhang, W., & Balding, D. J. (2002). Approximate Bayesian computation in population genetics. Genetics, 162, 2025-2035. https://doi.org/10.1093/genetics/162.4.2025
Boyle, E. A., Li, Y. I., & Pritchard, J. K. (2017). An expanded view of complex traits: From polygenic to omnigenic. Cell, 169, 1177-1186. https://doi.org/10.1016/j.cell.2017.05.038
Bradshaw, A. D. (1960). Population differentiation in Agrostis tenuis Sibth. III. Populations in varied environments. New Phytologist, 59, 92-103. https://doi.org/10.1111/j.1469-8137.1960.tb06206.x
Brousseau, L., Bonal, D., Cigna, J., & Scotti, I. (2013). Highly local environmental variability promotes intrapopulation divergence of quantitative traits: An example from tropical rain forest trees. Annals of Botany, 112, 1169-1179. https://doi.org/10.1093/aob/mct176
Brousseau, L., Foll, M., Scotti-Saintagne, C., & Scotti, I. (2015). Neutral and adaptive drivers of microgeographic genetic divergence within continuous populations: The case of the neotropical tree Eperua falcata (aubl.). PLoS One, 10(4), e0127134. https://doi.org/10.1371/journal.pone.0127134
Brousseau, L., Postolache, D., Lascoux, M., Drouzas, A. D., Källman, T., Leonarduzzi, C., Liepelt, S., Piotti, A., Popescu, F., Roschanski, A. M., Zhelev, P., Fady, B., & Vendramin, G. G. (2016). Local adaptation in European firs assessed through extensive sampling across altitudinal gradients in southern Europe. PLoS One, 11, e0158216. https://doi.org/10.1371/journal.pone.0158216
Bucci, G., González-Martínez, S. C., le Provost, G., Plomion, C., Ribeiro, M. M., Sebastiani, F., Alía, R., & Vendramin, G. G. (2007). Range-wide phylogeography and gene zones in Pinus pinaster Ait. Revealed by chloroplast microsatellite markers. Molecular Ecology, 16, 2137-2153. https://doi.org/10.1111/j.1365-294X.2007.03275.x
Budde, K. B., González-Martínez, S. C., Navascués, M., Burgarella, C., Mosca, E., Lorenzo, Z., Zabal-Aguirre, M., Vendramin, G. G., Verdú, M., Pausas, J. G., & Heuertz, M. (2017). Increased fire frequency promotes stronger spatial genetic structure and natural selection at regional and local scales in Pinus halepensis Mill. Annals of Botany, 119, 1061-1072. https://doi.org/10.1093/aob/mcw286
Bulmer, M. G. (1972). The genetic variability of polygenic characters under optimizing selection, mutation and drift. Genetical Research, 19, 17-25. https://doi.org/10.1017/S0016672300014221
Carvajal-Rodríguez, A. (2008). GENOMEPOP: A program to simulate genomes in populations. BMC Bioinformatics, 9, 223. https://doi.org/10.1186/1471-2105-9-223
Charlesworth, B., Nordborg, M., & Charlesworth, D. (1997). The effects of local selection, balanced polymorphism and background selection on equilibrium patterns of genetic diversity in subdivided populations. Genetics Research, 70, 155-174. https://doi.org/10.1017/S0016672397002954
Cingolani, P., Platts, A., Wang le, L., Coon, M., Nguyen, T., Wang, L., Land, S. J., Lu, X., & Ruden, D. M. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly, 6, 80-92. https://doi.org/10.4161/fly.19695
Conway, J. R., Lex, A., & Gehlenborg, A. N. (2017). UpSetR: An R package for the visualization of intersecting sets and their properties. Bioinformatics, 33, 2938-2940. https://doi.org/10.1093/bioinformatics/btx364
Cubry, P., Oddou-Muratorio, S., Scotti, I., & Lefèvre, F. (2022). Interactions between micro-environment, selection and genetic architecture drive multiscale adaptation in a simulation experiment. Journal of Evolutionary Biology, 35, 451-466. https://doi.org/10.1111/jeb.13988
De Meeûs, T., & Goudet, J. (2007). A step-by-step tutorial to use HierFstat to analyse populations hierarchically structured at multiple levels. Infection, Genetics and Evolution, 7, 731-735. https://doi.org/10.1016/j.meegid.2007.07.005
Delph, L. F., & Kelly, J. K. (2014). On the importance of balancing selection in plants. New Phytologist, 201, 45-56. https://doi.org/10.1111/nph.12441
Duforet-Frebourg, N., Bazin, E., & Blum, M. G. B. (2014). Genome scans for detecting footprints of local adaptation using a Bayesian factor model. Molecular Biology and Evolution, 31, 2483-2495. https://doi.org/10.1093/molbev/msu182
Eckert, A. J., Maloney, P. E., Vogler, D. R., Jensen, C. E., Mix, A. D., & Neale, D. B. (2015). Local adaptation at fine spatial scales: An example from sugar pine (Pinus lambertiana, Pinaceae). Tree Genetics & Genomes, 11, 42. https://doi.org/10.1007/s11295-015-0863-0
Emms, D. M., & Kelly, S. (2015). OrthoFinder: Solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biology, 16, 1-14.
Evans, L., Slavov, G., Rodgers-Melnick, E., Martin, J., Ranjan, P., Muchero, W., Brunner, A. M., Schackwitz, W., Gunter, L., Chen, J. G., Tuskan, G. A., & DiFazio, S. P. (2014). Population genomics of Populus trichocarpa identifies signatures of selection and adaptive trait associations. Nature Genetics, 46, 1089-1096. https://doi.org/10.1186/s13059-015-0721-2
Frachon, L., Bartoli, C., Carrère, S., Bouchez, O., Chaubet, A., Gautier, M., Roby, D., & Roux, F. (2018). A genomic map of climate adaptation in Arabidopsis thaliana at a micro-geographic scale. Frontiers in Plant Science, 9, 967. https://doi.org/10.3389/fpls.2018.00967
Gaudet, P., & Dessimoz, C. (2017). Gene ontology: Pitfalls, biases, and remedies. In C. Dessimoz & N. Škunca (Eds.), The gene ontology handbook. Methods in molecular biology (Vol. 1446. Humana Press. https://doi.org/10.1007/978-1-4939-3743-1_14
Gauzere, J., Klein, E. K., Brendel, O., Davi, H., & Oddou-Muratorio, S. (2020). Microgeographic adaptation and the effect of pollen flow on the adaptive potential of a temperate tree species. New Phytologist, 227, 641-653. https://doi.org/10.1111/nph.16537
Gayral, P., Melo-Ferreira, J., Glémin, S., Bierne, N., Carneiro, M., Nabholz, B., Lourenco, J. M., Alves, P. C., Ballenghien, M., Faivre, N., Belkhir, K., Cahais, V., Loire, E., Bernard, A., & Galtier, N. (2013). Reference-free population genomics from next-generation transcriptome data and the vertebrate-invertebrate gap. PLoS Genetics, 9, e1003457. https://doi.org/10.1371/journal.pgen.1003457
Gompert, Z., & Buerkle, C. A. (2011). A hierarchical Bayesian model for next-generation population genomics. Genetics, 187, 903-917. https://doi.org/10.1534/genetics.110.124693
González-Martínez, S. C., Ridout, K., & Pannell, J. R. (2017). Range expansion compromises adaptive evolution in an outcrossing plant. Current Biology, 27, 2544-2551.e4. https://doi.org/10.1016/j.cub.2017.07.007
Goudet, J. (2005). HIERFSTAT, a package for R to compute and test hierarchical F-statistics. Molecular Ecology Notes, 5, 184-186. https://doi.org/10.1111/j.1471-8286.2004.00828.x
Grivet, D., Sebastiani, F., González-Martínez, S. C., & Vendramin, G. G. (2009). Patterns of polymorphism resulting from long-range colonization in the Mediterranean conifer Aleppo pine. New Phytologist, 184, 1016-1028. https://doi.org/10.1111/j.1469-8137.2009.03015.x
Hallingbäck, H. R., Burton, V., Vizcaíno-palomar, N., Trotter, F., Liziniewicz, M., Marchi, M., Berlin, M., Ray, D., & Benito-Garzón, M. (2021). Managing uncertainty in scots pine range-wide adaptation under climate change. Frontiers in Ecology and Evolution, 9, 1-18. https://doi.org/10.3389/fevo.2021.724051
Hamrick, J. L., & Godt, M. J. W. (1990). Allozyme diversity in plant species. In A. H. D. Brown, M. T. Clegg, A. Kahler, & B. Weir (Eds.), Plant population genetics, breeding, and genetic resources (pp. 43-63). Sinauer Associates Inc.
Hoban, S., Kelley, J. L., Lotterhos, K. E., Antolin, M. F., Bradburd, G., Lowry, D. B., Poss, M. L., Reed, L. K., Storfer, A., & Whitlock, M. C. (2016). Finding the genomic basis of local adaptation: Pitfalls, practical solutions, and future directions. The American Naturalist, 188, 379-397. https://doi.org/10.1086/688018
Höllinger, I., Pennings, P. S., & Hermisson, J. (2019). Polygenic adaptation: From sweeps to subtle frequency shifts. PLoS Genetics, 15(3), 1-26. https://doi.org/10.1371/journal.pgen.1008035
Hrivnák, M., Paule, L., Krajmerová, D., Kulaç, Ş., Şevik, H., Turna, İ., Tvauri, I., & Gömöry, D. (2017). Genetic variation in tertiary relics: The case of eastern-Mediterranean Abies (Pinaceae). Ecology and Evolution, 7, 10018-10030. https://doi.org/10.1002/ece3.3519
Jaramillo-Correa, J. P., Bagnoli, F., Grivet, D., Fady, B., Aravanopoulos, F. A., Vendramin, G. G., & González-Martínez, S. C. (2020). Evolutionary rate and genetic load in an emblematic Mediterranean tree following an ancient and prolonged population collapse. Molecular Ecology, 29, 4797-4811. https://doi.org/10.1111/mec.15684
Jia, Y., Zhu, J., Wu, Y., Fan, W. B., Zhao, G. F., & Li, Z. H. (2018). Effects of geological and environmental events on the diversity and genetic divergence of four closely related pines: Pinus koraiensis, P. armandii, P. griffithii, and P. pumila. Frontiers in Plant Science, 9, 1264. https://doi.org/10.3389/fpls.2018.01264
Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90, 773-795. https://doi.org/10.1080/01621459.1995.10476572
Kimura, M. (1980). Average time until fixation of a mutant allele in a finite population under continued mutation pressure: Studies by analytical, numerical, and pseudo-sampling methods. Proceedings of the National Academy of Science of USA, 77, 522-526. https://doi.org/10.1073/pnas.77.1.522
Knaus, B. J., & Grünwald, N. J. (2017). Vcfr: A package to manipulate and visualize variant call format data in R. Molecular Ecology Resources, 17, 44-53. https://doi.org/10.1111/1755-0998.12549
Kremer, A., Ronce, O., Robledo-Arnuncio, J. J., Guillaume, F., Bohrer, G., Nathan, R., Bridle, J. R., Gomulkiewicz, R., Klein, E. K., Ritland, K., Kuparinen, A., Gerber, S., & Schueler, S. (2012). Long-distance gene flow and adaptation of forest trees to rapid climate change. Ecology Letters, 15, 378-392. https://doi.org/10.1111/j.1461-0248.2012.01746.x
Kuznetsova, I., Lugmayr, A., Siira, S. J., Rackham, O., & Filipovska, A. (2019). CirGO: An alternative circular way of visualising gene ontology terms. BMC Bioinformatics, 20(1), 1-7. https://doi.org/10.1186/s12859-019-2671-2
Langin, K. M., Sillett, T. S., Funk, W. C., Morrison, S. A., Desrosiers, M. A., & Ghalambor, C. K. (2015). Islands within an Island: Repeated adaptive divergence in a single population. Evolution, 69, 653-665. https://doi.org/10.1111/evo.12610
Lefèvre, F., Fady, B., Fallour-Rubio, D., Ghosn, D., & Bariteau, M. (2004). Impact of founder population, drift and selection on the genetic diversity of a recently translocated tree population. Heredity, 93, 542-550. https://doi.org/10.1038/sj.hdy.6800549
Liepelt, S., Cheddadi, R., de Beaulieu, J.-L., Fady, B., Gömöry, D., Hussendörfer, E., Konnert, M., Litt, T., Longauer, R., Terhürne-Berson, R., & Ziegenhagen, B. (2009). Postglacial range expansion and its genetic imprints in Abies alba (Mill.)-A synthesis from palaeobotanic and genetic data. Review of Palaeobotany and Palynology, 153, 139-149. https://doi.org/10.1016/j.revpalbo.2008.07.007
Lind, B. M., Friedline, C. J., Wegrzyn, J. L., Maloney, P. E., Vogler, D. R., Neale, D. B., & Eckert, A. J. (2017). Water availability drives signatures of local adaptation in whitebark pine (Pinus albicaulis Englm.) across fine spatial scales of the Lake Tahoe Basin, USA. Molecular Ecology, 26, 3168-3185. https://doi.org/10.1111/mec.14106
Liu, J., Wang, Y., & Li, Q. (2017). Analysis of differentially expressed genes and adaptive mechanisms of Prunus triloba Lindl. under alkaline stress. Hereditas, 154, 10. https://doi.org/10.1186/s41065-017-0031-7
Liu, L., & Caselli, R. J. (2019). Unbalanced sample size introduces spurious correlations to genome-wide heterozygosity analyses. Human Heredity, 84, 197-202. https://doi.org/10.1159/000507576
Liu, X., & Fu, Y. X. (2020). Stairway plot 2: Demographic history inference with folded SNP frequency spectra. Genome Biology, 21, 280. https://doi.org/10.1186/s13059-020-02196-9
Lobo, A., Hansen, J. K., Hansen, L. N., & Dahl, K. E. (2018). Differences among six woody perennials native to northern Europe in their level of genetic differentiation and adaptive potential at fine local scale. Ecology and Evolution, 8, 2231-2239. https://doi.org/10.1002/ece3.3824
Lotterhos, K. E., & Whitlock, M. C. (2015). The relative power of genome scans to detect local adaptation depends on sampling design and statistical method. Molecular Ecology, 24, 1031-1046. https://doi.org/10.1111/mec.13100
Luu, K., Bazin, E., & Blum, M. G. B. (2017). Pcadapt: An R package to perform genome scans for selection based on principal component analysis. Molecular Ecology Resources, 17, 67-77. https://doi.org/10.1111/1755-0998.12592
Makowski, D., Ben-Shachar, M. S., Chen, S. H. A., & Lüdecke, D. (2019). Indices of effect existence and significance in the Bayesian framework. Frontiers in Psychology, 10, 2767. https://doi.org/10.3389/fpsyg.2019.02767
Mei, W., Stetter, M. G., Gates, D. J., Stitzer, M. C., & Ross-Ibarra, J. (2018). Adaptation in plant genomes: Bigger is different. American Journal of Botany, 105(1), 16-19. https://doi.org/10.1002/ajb2.1002
Mosca, E., Gugerli, F., Eckert, A. J., & Neale, D. B. (2016). Signatures of natural selection on Pinus cembra and P. mugo along elevational gradients in the Alps. Tree Genetics & Genomes, 12, 9. https://www.dora.lib4ri.ch/wsl/islandora/object/wsl%3A5492
Nadeau, N. J., & Jiggins, C. D. (2010). A golden age for evolutionary genetics? Genomic studies of adaptation in natural populations. Trends in Genetics, 26, 484-492. https://doi.org/10.1016/j.tig.2010.08.004
Nei, M. (1987). Molecular evolutionary genetics. Columbia University Press. https://doi.org/10.7312/nei-92038
Neuenschwander, S., Hospital, F., Guillaume, F., & Goudet, J. (2008). QUANTINEMO: An individual-based program to simulate quantitative traits with explicit genetic architecture in a dynamic metapopulation. Bioinformatics, 24, 1552-1553. https://doi.org/10.1093/bioinformatics/btn219
Olsson, S., Lorenzo, Z., Zabal-Aguirre, M., Piotti, A., Vendramin, G. G., González-Martínez, S. C., & Grivet, D. (2021). Evolutionary history of the mediterranean Pinus halepensis-brutia species complex using gene-resequencing and transcriptomic approaches. Plant Molecular Biology, 106, 367-380. https://doi.org/10.1007/s11103-021-01155-7
Peñalba, J. V., Smith, L. L., Tonione, M., Sass, C., Hykin, S. M., Skipwith, P. L., McGuire, J., Bowie, R. C. K., & Moritz, C. (2014). Sequence capture using PCR-generated probes: A cost-effective method of targeted high-throughput sequencing for nonmodel organisms. Molecular Ecology Resources, 14, 1000-1010. https://doi.org/10.1111/1755-0998.12249
R Development Core Team. (2008). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Rellstab, C., Gugerli, F., Eckert, A. J., Hancock, A. M., & Holderegger, R. (2015). A practical guide to environmental association analysis in landscape genomics. Molecular Ecology, 24, 4348-4370. https://doi.org/10.1111/mec.13322
Richardson, J. L., Urban, M. C., Bolnick, D. I., & Skelly, D. K. (2014). Microgeographic adaptation and the spatial scale of evolution. Trends in Ecology & Evolution, 29, 165-176. https://doi.org/10.1016/j.tree.2014.01.002
Roschanski, A. M., Csilléry, K., Liepelt, S., Oddou-Muratorio, S., Ziegenhagen, B., Huard, F., Ullrich, K. K., Postolache, D., Vendramin, G. G., & Fady, B. (2016). Evidence of divergent selection for drought and cold tolerance at landscape and local scales in Abies alba Mill. in the French Mediterranean Alps. Molecular Ecology, 25, 776-794. https://doi.org/10.1111/mec.13516
Ruiz Daniels, R., Taylor, R. S., Martínez, S. C. G., Vendramin, G. G., Fady, B., Oddou-Muratorio, S., Piotti, A., Simioni, G., Grivet, D., & Beaumont, M. A. (2019). Looking for local adaptation: Convergent microevolution in Aleppo pine (Pinus halepensis). Genes, 10, 673. https://doi.org/10.3390/genes10090673
Safdarian, M., Askari, H., Shariati, J. V., & Nematzadeh, G. (2019). Transcriptional responses of wheat roots inoculated with Arthrobacter nitroguajacolicus to salt stress. Scientific Reports, 9, 1-13. https://doi.org/10.1038/s41598-018-38398-2
Saleh, D., Chen, J., Leplé, J.-C., Leroy, T., Truffaut, L., Dencausse, B., Lalanne, C., Labadie, K., Lesur, I., Bert, D., Lagane, F., Morneau, F., Aury, J. M., Plomion, C., Lascoux, M., & Kremer, A. (2022). Genome-wide evolutionary response of European oaks since the Anthropocene. Evolution Letters, 6(1), 4-20. https://doi.org/10.1002/evl3.269
Savolainen, V., Anstett, M.-C., Lexer, C., Hutton, I., Clarkson, J. J., Norup, M. V., Powell, M. P., Springate, D., Salamin, N., & Baker, W. J. (2006). Sympatric speciation in palms on an oceanic Island. Nature, 441, 210-213. https://doi.org/10.1038/nature04566
Scotti-Saintagne, C., Boivin, T., Suez, M., Musch, B., Scotti, I., & Fady, B. (2021). Signature of mid-Pleistocene lineages in the European silver fir (Abies alba Mill.) at its geographic distribution margin. Ecology and Evolution, 11, 10984-10999. https://doi.org/10.1002/ece3.7886
Sexton, J. P., Hangartner, S. B., & Hoffmann, A. A. (2014). Genetic isolation by environment or distance: Which pattern of gene flow is most common? Evolution, 68, 1-15. https://doi.org/10.1111/evo.12258
Storey, J. D., Bass, A. J., Dabney, A., & Robinson, D. (2015). Qvalue: Q-value estimation for false discovery rate control. R package version 2.0. http://github.com/jdstorey/qvalue
Supek, F., Bošnjak, M., Škunca, N., & Šmuc, T. (2011). Revigo summarizes and visualizes long lists of gene ontology terms. PLoS One, 6(7), e21800. https://doi.org/10.1371/journal.pone.0021800
Tenaillon, O., Rodríguez-Verdugo, A., Gaut, R. L., McDonald, P., Bennett, A. F., Long, A. D., & Gaut, B. S. (2012). The molecular diversity of adaptive convergence. Science, 335, 457-461. https://doi.org/10.1126/science.1212986
Terrab, A., Hampe, A., Lepais, O., Talavera, S., Vela, E., & Stuessy, T. F. (2008). Phylogeography of north African atlas cedar (Cedrus atlantica, Pinaceae): Combined molecular and fossil data reveal a complex quaternary history. American Journal of Botany, 95, 1262-1269. https://doi.org/10.3732/ajb.0800010
Turner, T. L., Bourne, E. C., von Wettberg, E. J., Hu, T. T., & Nuzhdin, S. V. (2010). Population resequencing reveals local adaptation of Arabidopsis lyrata to serpentine soils. Nature Genetics, 42(3), 260-263. https://doi.org/10.1038/ng.515
Vendramin, G. G., Avanzi, C., González-Martínez, S. C., & Grivet, D. (2021). Population genetics and genomics of Aleppo pine (Pinus halepensis). In G. Ne'eman & Y. Osem (Eds.), Pines and their mixed forest ecosystems in the Mediterranean Basin (pp. 83-99). Springer Nature Switzerland.
Vendramin, G. G., Fady, B., González-Martínez, S. C., Hu, F. S., Scotti, I., Sebastiani, F., Soto, A., & Petit, R. J. (2008). Genetically depauperate but widespread: The case of an emblematic Mediterranean pine. Evolution, 62, 680-688. https://doi.org/10.1111/evo.2008.62.issue-3
Wang, T., O'Neill, G. A., & Aitken, S. N. (2010). Integrating environmental and genetic effects to predict responses of tree populations to climate. Ecological Applications, 20(1), 153-163. https://doi.org/10.1890/08-2257.1
Willyard, A., Syring, J., Gernandt, D. S., Liston, A., & Cronn, R. (2007). Fossil calibration of molecular divergence infers a moderate mutation rate and recent radiations for Pinus. Molecular Biology and Evolution, 24, 90-101. https://doi.org/10.1093/molbev/msl131
Yang, R.-C. (1998). Estimating hierarchical F-statistics. Evolution, 52, 950-956. https://doi.org/10.1111/j.1558-5646.1998.tb01824.x
Yeaman, S., Hodgins, K. A., Lotterhos, K. E., Suren, H., Nadeau, S., Degner, J. C., Nurkowski, K. A., Smets, P., Wang, T., Gray, L. K., Liepe, K. J., Hamann, A., Holliday, J. A., Whitlock, M. C., Rieseberg, L. H., & Aitken, S. N. (2016). Convergent local adaptation to climate in distantly related conifers. Science, 353(6306), 1431-1433. https://doi.org/10.1126/science.aaf7812
Yeaman, S., & Otto, S. P. (2011). Establishment and maintenance of adaptive genetic divergence under migration, selection, and drift. Evolution, 65, 2123-2129. https://doi.org/10.1111/j.1558-5646.2011.01277.x
Yeaman, S., & Whitlock, M. C. (2011). The genetic architecture of adaptation under migration-selection balance. Evolution, 65, 1897-1911. https://doi.org/10.1111/j.1558-5646.2011.01269.x
Zhang, X., Zhuang, L., Liu, Y., Yang, Z., & Huang, B. (2020). Protein phosphorylation associated with drought priming-enhanced heat tolerance in a temperate grass species. Horticulture Research, 7, 207. https://doi.org/10.1038/s41438-020-00440-8
Zhou, B., Zhang, L., Ullah, A., Jin, X., Yang, X., & Zhang, X. (2016). Identification of multiple stress responsive genes by sequencing a normalized cDNA library from sea-land cotton (Gossypium barbadense L.). PLoS One, 11, 1-22. https://doi.org/10.1371/journal.pone.0152927