SecReT6 update: a comprehensive resource of bacterial Type VI Secretion Systems.
Acinetobacter baumannii
T6SS-related protein
Type VI Secretion System
database
prediction
Journal
Science China. Life sciences
ISSN: 1869-1889
Titre abrégé: Sci China Life Sci
Pays: China
ID NLM: 101529880
Informations de publication
Date de publication:
03 2023
03 2023
Historique:
received:
07
04
2022
accepted:
27
07
2022
pubmed:
9
11
2022
medline:
28
3
2023
entrez:
8
11
2022
Statut:
ppublish
Résumé
Type VI Secretion System (T6SS) plays significant roles in microbial activities via injecting effectors into adjacent cells or environments. T6SS increasingly gained attention due to its important influence on pathogenesis, microbial competition, etc. T6SS-associated research is explosively expanding on numerous grounds that call for an efficient resource. The SecReT6 version 3 provides comprehensive information on T6SS and the interactions between T6SS and T6SS-related proteins such as T6SS regulators and T6SS effectors. To assist T6SS researches like microbial competition and regulatory mechanisms, SecReT6 v3 developed online tools for detection and analysis of T6SS and T6SS-related proteins and estimation of T6SS-dependent killing risk. We have identified a novel T6SS regulator and T6SS-dependent killing capacity in Acinetobacter baumannii clinical isolates with the aid of SecReT6 v3. 17,212 T6SSs and plentiful T6SS-related proteins in 26,573 bacterial complete genomes were also detected, analyzed and incorporated into the database. The database is freely available at https://bioinfo-mml.sjtu.edu.cn/SecReT6/ .
Identifiants
pubmed: 36346548
doi: 10.1007/s11427-022-2172-x
pii: 10.1007/s11427-022-2172-x
doi:
Substances chimiques
Type VI Secretion Systems
0
Bacterial Proteins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
626-634Informations de copyright
© 2022. Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Allsopp, L.P., Wood, T.E., Howard, S.A., Maggiorelli, F., Nolan, L.M., Wettstadt, S., and Filloux, A. (2017). RsmA and AmrZ orchestrate the assembly of all three type VI secretion systems in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 114, 7707–7712.
pubmed: 28673999
pmcid: 5530658
doi: 10.1073/pnas.1700286114
Almagro Armenteros, J.J., Tsirigos, K.D., Sønderby, C.K., Petersen, T.N., Winther, O., Brunak, S., von Heijne, G., and Nielsen, H. (2019). SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol 37, 420–423.
pubmed: 30778233
doi: 10.1038/s41587-019-0036-z
An, Y., Wang, J., Li, C., Revote, J., Zhang, Y., Naderer, T., Hayashida, M., Akutsu, T., Webb, G.I., Lithgow, T., et al. (2017). SecretEPDB: a comprehensive web-based resource for secreted effector proteins of the bacterial types III, IV and VI secretion systems. Sci Rep 7, 41031.
pubmed: 28112271
pmcid: 5253721
doi: 10.1038/srep41031
Basler, M., Ho, B.T., and Mekalanos, J.J. (2013). Tit-for-tat: type VI secretion system counterattack during bacterial cell-cell interactions. Cell 152, 884–894.
pubmed: 23415234
pmcid: 3616380
doi: 10.1016/j.cell.2013.01.042
Bernal, P., Furniss, R.C.D., Fecht, S., Leung, R.C.Y., Spiga, L., Mavridou, D.A.I., and Filloux, A. (2021). A novel stabilization mechanism for the type VI secretion system sheath. Proc Natl Acad Sci USA 118, e2008500118.
pubmed: 33558227
pmcid: 7896307
doi: 10.1073/pnas.2008500118
Böck, D., Medeiros, J.M., Tsao, H.F., Penz, T., Weiss, G.L., Aistleitner, K., Horn, M., and Pilhofer, M. (2017). In situ architecture, function, and evolution of a contractile injection system. Science 357, 713–717.
pubmed: 28818949
pmcid: 6485382
doi: 10.1126/science.aan7904
Bodenhofer, U., Bonatesta, E., Horejš-Kainrath, C., and Hochreiter, S. (2015). msa: an R package for multiple sequence alignment. Bioinformatics 31, btv494.
doi: 10.1093/bioinformatics/btv494
Bondage, D.D., Lin, J.S., Ma, L.S., Kuo, C.H., and Lai, E.M. (2016). VgrG C terminus confers the type VI effector transport specificity and is required for binding with PAAR and adaptor-effector complex. Proc Natl Acad Sci USA 113, E3931–E3940.
pubmed: 27313214
pmcid: 4941472
doi: 10.1073/pnas.1600428113
Borgeaud, S., Metzger, L.C., Scrignari, T., and Blokesch, M. (2015). The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer. Science 347, 63–67.
pubmed: 25554784
doi: 10.1126/science.1260064
Burkinshaw, B.J., Liang, X., Wong, M., Le, A.N.H., Lam, L., and Dong, T. G. (2018). A type VI secretion system effector delivery mechanism dependent on PAAR and a chaperone-co-chaperone complex. Nat Microbiol 3, 632–640.
pubmed: 29632369
doi: 10.1038/s41564-018-0144-4
Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., and Madden, T.L. (2009). BLAST+: architecture and applications. BMC BioInf 10, 421.
doi: 10.1186/1471-2105-10-421
Chen, L., Zou, Y., She, P., and Wu, Y. (2015). Composition, function, and regulation of T6SS in Pseudomonas aeruginosa. Microbiol Res 172, 19–25.
pubmed: 25721475
doi: 10.1016/j.micres.2015.01.004
Coyne, M.J., and Comstock, L.E. (2019). Type VI secretion systems and the gut microbiota. Microbiol Spectr 7, PSIB-0009-2018.
doi: 10.1128/microbiolspec.PSIB-0009-2018
Eichinger, V., Nussbaumer, T., Platzer, A., Jehl, M.A., Arnold, R., and Rattei, T. (2016). EffectiveDB—updates and novel features for a better annotation of bacterial secreted proteins and Type III, IV, VI secretion systems. Nucleic Acids Res 44, D669–D674.
pubmed: 26590402
doi: 10.1093/nar/gkv1269
Finn, R.D., Clements, J., and Eddy, S.R. (2011). HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39, W29–W37.
pubmed: 21593126
pmcid: 3125773
doi: 10.1093/nar/gkr367
Fridman, C.M., Keppel, K., Gerlic, M., Bosis, E., and Salomon, D. (2020). A comparative genomics methodology reveals a widespread family of membrane-disrupting T6SS effectors. Nat Commun 11, 1085.
pubmed: 32109231
pmcid: 7046647
doi: 10.1038/s41467-020-14951-4
Fu, Y., Ho, B.T., and Mekalanos, J.J. (2018). Tracking Vibrio cholerae cell-cell interactions during infection reveals bacterial population dynamics within intestinal microenvironments. Cell Host Microbe 23, 274–281.e2.
pubmed: 29398650
pmcid: 6031135
doi: 10.1016/j.chom.2017.12.006
Hersch, S.J., Watanabe, N., Stietz, M.S., Manera, K., Kamal, F., Burkinshaw, B., Lam, L., Pun, A., Li, M., Savchenko, A., et al. (2020). Envelope stress responses defend against type six secretion system attacks independently of immunity proteins. Nat Microbiol 5, 706–714.
pubmed: 32094588
pmcid: 7190449
doi: 10.1038/s41564-020-0672-6
Ho, B.T., Basler, M., and Mekalanos, J.J. (2013). Type 6 secretion systemmediated immunity to type 4 secretion system-mediated gene transfer. Science 342, 250–253.
pubmed: 24115441
pmcid: 4034461
doi: 10.1126/science.1243745
Joshi, A., Kostiuk, B., Rogers, A., Teschler, J., Pukatzki, S., and Yildiz, F. H. (2017). Rules of engagement: the type VI secretion system in Vibrio cholerae. Trends Microbiol 25, 267–279.
pubmed: 28027803
doi: 10.1016/j.tim.2016.12.003
Jurėnas, D., and Journet, L. (2021). Activity, delivery, and diversity of Type VI secretion effectors. Mol Microbiol 115, 383–394.
pubmed: 33217073
doi: 10.1111/mmi.14648
Katoh, K., and Standley, D.M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30, 772–780.
pubmed: 23329690
pmcid: 3603318
doi: 10.1093/molbev/mst010
Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, E.L.L. (2001). Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J Mol Biol 305, 567–580.
pubmed: 11152613
doi: 10.1006/jmbi.2000.4315
Le, N.H., Pinedo, V., Lopez, J., Cava, F., and Feldman, M.F. (2021). Killing of Gram-negative and Gram-positive bacteria by a bifunctional cell wall-targeting T6SS effector. Proc Natl Acad Sci USA 118, e2106555118.
pubmed: 34588306
pmcid: 8501793
doi: 10.1073/pnas.2106555118
Li, J., Yao, Y., Xu, H.H., Hao, L., Deng, Z., Rajakumar, K., and Ou, H.Y. (2015). SecReT6: a web-based resource for type VI secretion systems found in bacteria. Environ Microbiol 17, 2196–2202.
pubmed: 25640659
doi: 10.1111/1462-2920.12794
Liang, X., Moore, R., Wilton, M., Wong, M.J.Q., Lam, L., and Dong, T.G. (2015). Identification of divergent type VI secretion effectors using a conserved chaperone domain. Proc Natl Acad Sci USA 112, 9106–9111.
pubmed: 26150500
pmcid: 4517263
doi: 10.1073/pnas.1505317112
Lin, H.H., Filloux, A., and Lai, E.M. (2020). Role of recipient susceptibility factors during contact-dependent interbacterial competition. Front Microbiol 11, 603652.
pubmed: 33281802
pmcid: 7690452
doi: 10.3389/fmicb.2020.603652
Medema, M.H., Takano, E., and Breitling, R. (2013). Detecting sequence homology at the gene cluster level with MultiGeneBlast. Mol Biol Evol 30, 1218–1223.
pubmed: 23412913
pmcid: 3670737
doi: 10.1093/molbev/mst025
Mok, B.Y., de Moraes, M.H., Zeng, J., Bosch, D.E., Kotrys, A.V., Raguram, A., Hsu, F.S., Radey, M.C., Peterson, S.B., Mootha, V.K., et al. (2020). A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature 583, 631–637.
pubmed: 32641830
pmcid: 7381381
doi: 10.1038/s41586-020-2477-4
Price, M.N., Dehal, P.S., and Arkin, A.P. (2010). FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490.
pubmed: 20224823
pmcid: 2835736
doi: 10.1371/journal.pone.0009490
Quentin, D., Ahmad, S., Shanthamoorthy, P., Mougous, J.D., Whitney, J.C., and Raunser, S. (2018). Mechanism of loading and translocation of type VI secretion system effector Tse6. Nat Microbiol 3, 1142–1152.
pubmed: 30177742
pmcid: 6488228
doi: 10.1038/s41564-018-0238-z
Russell, A.B., Wexler, A.G., Harding, B.N., Whitney, J.C., Bohn, A.J., Goo, Y.A., Tran, B.Q., Barry, N.A., Zheng, H., Peterson, S.B., et al. (2014). A type VI secretion-related pathway in Bacteroidetes mediates interbacterial antagonism. Cell Host Microbe 16, 227–236.
pubmed: 25070807
pmcid: 4136423
doi: 10.1016/j.chom.2014.07.007
Si, M., Zhao, C., Burkinshaw, B., Zhang, B., Wei, D., Wang, Y., Dong, T. G., and Shen, X. (2017). Manganese scavenging and oxidative stress response mediated by type VI secretion system in Burkholderia thailandensis. Proc Natl Acad Sci USA 114, E2233–E2242.
pubmed: 28242693
pmcid: 5358365
doi: 10.1073/pnas.1614902114
Sievers, F., and Higgins, D.G. (2018). Clustal Omega for making accurate alignments of many protein sequences. Protein Sci 27, 135–145.
pubmed: 28884485
doi: 10.1002/pro.3290
Storey, D., McNally, A., Åstrand, M., Sa-Pessoa Graca Santos, J., Rodriguez-Escudero, I., Elmore, B., Palacios, L., Marshall, H., Hobley, L., Molina, M., et al. (2020). Klebsiella pneumoniae type VI secretion system-mediated microbial competition is PhoPQ controlled and reactive oxygen species dependent. PLoS Pathog 16, e1007969.
pubmed: 32191774
pmcid: 7108748
doi: 10.1371/journal.ppat.1007969
Sullivan, M.J., Petty, N.K., and Beatson, S.A. (2011). Easyfig: a genome comparison visualizer. Bioinformatics 27, 1009–1010.
pubmed: 21278367
pmcid: 3065679
doi: 10.1093/bioinformatics/btr039
Vettiger, A., Winter, J., Lin, L., and Basler, M. (2017). The type VI secretion system sheath assembles at the end distal from the membrane anchor. Nat Commun 8, 16088.
pubmed: 28703218
pmcid: 5511345
doi: 10.1038/ncomms16088
Wang, J., Brodmann, M., and Basler, M. (2019a). Assembly and subcellular localization of bacterial type VI secretion systems. Annu Rev Microbiol 73, 621–638.
pubmed: 31226022
doi: 10.1146/annurev-micro-020518-115420
Wang, J., Li, J., Hou, Y., Dai, W., Xie, R., Marquez-Lago, T.T., Leier, A., Zhou, T., Torres, V., Hay, I., et al. (2021). BastionHub: a universal platform for integrating and analyzing substrates secreted by Gram-negative bacteria. Nucleic Acids Res 49, D651–D659.
pubmed: 33084862
doi: 10.1093/nar/gkaa899
Wang, J., Yang, B., Leier, A., Marquez-Lago, T.T., Hayashida, M., Rocker, A., Zhang, Y., Akutsu, T., Chou, K.C., Strugnell, R.A., et al. (2018). Bastion6: a bioinformatics approach for accurate prediction of type VI secreted effectors. Bioinformatics 34, 2546–2555.
pubmed: 29547915
pmcid: 6061801
doi: 10.1093/bioinformatics/bty155
Wang, Y., Wang, Z., Chen, Y., Hua, X., Yu, Y., and Ji, Q. (2019b). A highly efficient CRISPR-Cas9-based genome engineering platform in Acinetobacter baumannii to understand the H
pubmed: 31548010
doi: 10.1016/j.chembiol.2019.09.003
Weber, B.S., Hennon, S.W., Wright, M.S., Scott, N.E., de Berardinis, V., Foster, L.J., Ayala, J.A., Adams, M.D., and Feldman, M.F. (2016). Genetic dissection of the type VI secretion system in Acinetobacter and identification of a novel peptidoglycan hydrolase, TagX, required for its biogenesis. mBio 7, e01253–16.
pubmed: 27729508
pmcid: 5061870
doi: 10.1128/mBio.01253-16
Yadav, S.K., Magotra, A., Ghosh, S., Krishnan, A., Pradhan, A., Kumar, R., Das, J., Sharma, M., and Jha, G. (2021). Immunity proteins of dual nuclease T6SS effectors function as transcriptional repressors. EMBO Rep 22, e53112.
pubmed: 34060187
pmcid: 8183404
doi: 10.15252/embr.202153112
Yu, G., Lam, T.T.Y., Zhu, H., and Guan, Y. (2018). Two methods for mapping and visualizing associated data on phylogeny using Ggtree. Mol Biol Evol 35, 3041–3043.
pubmed: 30351396
pmcid: 6278858
doi: 10.1093/molbev/msy194
Zhao, W., Caro, F., Robins, W., and Mekalanos, J.J. (2018). Antagonism toward the intestinal microbiota and its effect on Vibrio cholerae virulence. Science 359, 210–213.
pubmed: 29326272
pmcid: 8010019
doi: 10.1126/science.aap8775
Zhu, L., Xu, L., Wang, C., Li, C., Li, M., Liu, Q., Wang, X., Yang, W., Pan, D., Hu, L., et al. (2021). T6SS translocates a micropeptide to suppress STING-mediated innate immunity by sequestering manganese. Proc Natl Acad Sci USA 118, e2103526118.
pubmed: 34625471
pmcid: 8545469
doi: 10.1073/pnas.2103526118