Polyphasic identification of Vibrio species from aquatic sources using mass spectrometry, housekeeping gene sequencing and whole genome analysis.
Vibrio
pyrH
16s rRNA
Identification
whole genome sequencing
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
01 Nov 2024
01 Nov 2024
Historique:
received:
04
08
2024
accepted:
28
10
2024
medline:
1
11
2024
pubmed:
1
11
2024
entrez:
1
11
2024
Statut:
epublish
Résumé
Accurate bacterial identification is essential for determining the causative agent of an infection, thus facilitating appropriate treatment and management strategies in both human and animal health contexts. Some species in the Vibrio genus are recognized pathogens, associated with a variety of infections. However, identification of these bacteria is oftentimes controversial. Therefore, we aimed to evaluate different identification approaches in terms of their reliability in distinguishing Vibrio species. To achieve this, we selected a set of 40 Vibrio isolates previously recovered from water and floating plastic samples in a large bay environment and identified them employing MALDI-TOF mass spectrometry, and rrs and pyrH gene sequencing. A subset of isolates was also submitted to whole genome sequencing. Overall, MALDI-TOF was found to be a fast-screening methodology for identification, notably at genus-level. However, for better species discrimination, pyrH gene sequencing stood out as a more reliable tool in contrast to rrs gene sequencing and MALDI-TOF, as corroborated by whole genome sequencing analysis.
Identifiants
pubmed: 39482377
doi: 10.1038/s41598-024-77919-0
pii: 10.1038/s41598-024-77919-0
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
26250Subventions
Organisme : Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
ID : Finance Code 001
Organisme : Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro
ID : E-26/211.554/2019
Organisme : Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro
ID : E-26/211.284/2021
Organisme : Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro
ID : E-26/200.948/2021
Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico
ID : 309158/2023-0
Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico
ID : 405020/2023-6
Informations de copyright
© 2024. The Author(s).
Références
Moussa, M. et al. A MALDI-TOF MS database for fast identification of Vibrio spp. potentially pathogenic to marine mollusks. Appl. Microbiol. Biotechnol. 105 (6), 2527–2539 (2021).
doi: 10.1007/s00253-021-11141-0
pubmed: 33590268
pmcid: 7954726
GTDB. Genome Taxonomy Database. https://gtdb.ecogenomic.org/tree?r=d__Bacteria (2023).
Baker-Austin, C. et al. Vibrio spp. infections. Nat. Rev. Dis. Primers 4 (1), 1–19. https://doi.org/10.1038/s41572-018-0005-8 (2018).
doi: 10.1038/s41572-018-0005-8
Parte, A. C., Sardà Carbasse, J., Meier-Kolthoff, J. P., Reimer, L. C. & Göker, M. List of prokaryotic names with standing in nomenclature (LPSN) moves to the DSMZ. Int. J. Syst. Evol. Microbiol. 70, 5607–5612 (2020).
doi: 10.1099/ijsem.0.004332
pubmed: 32701423
pmcid: 7723251
Canellas, A. L. B. et al. Vibrio species in an urban tropical estuary: antimicrobial susceptibility, interaction with environmental parameters, and possible public health outcomes. Microorganisms 9 (5), 1007 (2021).
doi: 10.3390/microorganisms9051007
pubmed: 34067081
pmcid: 8151235
Yang, B. et al. Identification of Vibrio alginolyticus as a causative pathogen associated with mass summer mortality of the Pacific Oyster (Crassostrea gigas) in China. Aquaculture 535, 736363 (2021).
doi: 10.1016/j.aquaculture.2021.736363
Bauer, J. et al. Recommendations for identifying pathogenic Vibrio spp. as part of disease surveillance programmes in recirculating aquaculture systems for Pacific white shrimps (Litopenaeus vannamei). J. Fish. Dis. 41 (12), 1877–1897 (2018).
doi: 10.1111/jfd.12897
pubmed: 30311657
Pascual, J., Macián, M. C., Arahal, D. R., Garay, E. & Pujalte, M. J. Multilocus sequence analysis of the central clade of the genus Vibrio by using the 16S rRNA, recA, pyrH, rpoD, gyrB, rctB and toxR genes. Int. J. Syst. Evol. Microbiol. 60 (Pt 1), 154–165 (2010).
doi: 10.1099/ijs.0.010702-0
pubmed: 19648344
Amalina, N. Z. et al. Recent update on the prevalence of Vibrio species among cultured grouper in Peninsular Malaysia. Aquac. Res. 50, 11, 3202–3210 (2019).
doi: 10.1111/are.14275
Culot, A. et al. Isolation of Harveyi clade Vibrio spp. collected in aquaculture farms: How can the identification issue be addressed? J. Microbiol. Methods 180, 106106 (2021).
doi: 10.1016/j.mimet.2020.106106
pubmed: 33248180
Sawabe, T., Kita-Tsukamoto, K. & Thompson, F. L. Inferring the evolutionary history of vibrios by means of multilocus sequence analysis. J. Bacteriol. 189 (21), 7932–7936 (2007).
doi: 10.1128/JB.00693-07
pubmed: 17704223
pmcid: 2168739
Tall, A. et al. Diversity of Vibrio spp. isolated at ambient environmental temperature in the Eastern English Channel as determined by pyrH sequencing. J. Appl. Microbiol. 114 (6), 1713–1724 (2013).
doi: 10.1111/jam.12181
pubmed: 23473469
Thompson, F. L. et al. Phylogeny and molecular identification of vibrios on the basis of multilocus sequence analysis. Appl. Environ. Microbiol. 71 (9), 5107–5115 (2005).
doi: 10.1128/AEM.71.9.5107-5115.2005
pubmed: 16151093
pmcid: 1214639
Canellas, A. L. B. et al. Antimicrobial resistance and biotechnological potential of plastic-associated bacteria isolated from an urban estuary. Environ. Microbiol. 25 (12), 2851–2863 (2023).
doi: 10.1111/1462-2920.16540
pubmed: 37950375
Pinto, T. C. et al. Potential of MALDI-TOF MS as an alternative approach for capsular typing Streptococcus pneumoniae isolates. Sci. Rep. 7, 1–5 (2017).
doi: 10.1038/srep45572
Walsh, P. S., Metzger, D. A. & Higuchi, R. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques 10 (4), 506–513 (1991).
pubmed: 1867860
Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D.J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173 (2), 697–703 (1991).
doi: 10.1128/jb.173.2.697-703.1991
pubmed: 1987160
pmcid: 207061
Hall, T. A. & BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symp. Ser.41, 95–98 (1999).
Yoon, S. H. et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67 (5), 1613–1617 (2017).
doi: 10.1099/ijsem.0.001755
pubmed: 28005526
pmcid: 5563544
Chun, J. et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 68 (1), 461–466 (2018).
doi: 10.1099/ijsem.0.002516
pubmed: 29292687
Pruesse, E., Peplies, J. & Glöckner, F. O. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics (Oxford England) 28 (14), 1823–1829 (2012).
Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35 (6), 1547–1549 (2018).
doi: 10.1093/molbev/msy096
pubmed: 29722887
pmcid: 5967553
Andrews, S. & FastQC: A quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).
Krueger, F., James, F., Ewels, P. & Afyounian, E. & Schuster-Boeckler, B. FelixKrueger/TrimGalore: v0.6.7-DOI via Zenodo (0.6.7), version 0.6.7. https://zenodo.org/record/5127899 (2021).
Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19 (5), 455–477 (2012).
doi: 10.1089/cmb.2012.0021
pubmed: 22506599
Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics (Oxford England) 30 (14), 2068–2069 (2014).
Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25 (7), 1043–1055 (2015).
doi: 10.1101/gr.186072.114
pubmed: 25977477
pmcid: 4484387
Meier-Kolthoff, J. P. & Göker, M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 10 (1), 2182 (2019).
doi: 10.1038/s41467-019-10210-3
pubmed: 31097708
pmcid: 6522516
Meier-Kolthoff, J. P., Carbasse, J. S., Peinado-Olarte, R. L. & Göker, M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res. 50 (D1), D801–D807 (2022).
doi: 10.1093/nar/gkab902
pubmed: 34634793
Meier-Kolthoff, J. P., Auch, A. F., Klenk, H. P. & Göker, M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 14, 60 (2013).
doi: 10.1186/1471-2105-14-60
Lefort, V., Desper, R. & Gascuel, O. FastME 2.0: A comprehensive, accurate, and fast distance-based phylogeny inference program. Mol. Biol. Evol. 32 (10), 2798–2800 (2015).
doi: 10.1093/molbev/msv150
pubmed: 26130081
pmcid: 4576710
Farris, J. S. Estimating phylogenetic trees from distance matrices. Am. Nat. 106, 645–667 (1972). https://www.jstor.org/stable/2459725
doi: 10.1086/282802
Kreft, L., Botzki, A., Coppens, F., Vandepoele, K. & Van Bel, M. PhyD3: A phylogenetic tree viewer with extended phyloXML support for functional genomics data visualization. Bioinformatics 33, 2946–2947 (2017).
doi: 10.1093/bioinformatics/btx324
pubmed: 28525531
Håkonsholm, F. et al. Vibrios from the Norwegian marine environment: Characterization of associated antibiotic resistance and virulence genes. Microbiologyopen 9 (9), e1093 (2020).
doi: 10.1002/mbo3.1093
pubmed: 32558371
pmcid: 7520990
Sawabe, T. et al. Updating the Vibrio clades defined by multilocus sequence phylogeny: proposal of eight new clades, and the description of Vibrio tritonius sp. nov. Front. Microbiol. 4, 414 (2013).
doi: 10.3389/fmicb.2013.00414
pubmed: 24409173
pmcid: 3873509
Urbanczyk, H., Ogura, Y. & Hayashi, T. Taxonomic revision of Harveyi clade bacteria (family Vibrionaceae) based on analysis of whole genome sequences. Int. J. Syst. Evol. Microbiol. 63 (Pt 7), 2742–2751 (2013).
doi: 10.1099/ijs.0.051110-0
pubmed: 23710045
Erler, R. et al. VibrioBase: a MALDI-TOF MS database for fast identification of Vibrio spp. that are potentially pathogenic in humans. Syst. Appl. Microbiol. 38 (1), 16–25 (2015).
doi: 10.1016/j.syapm.2014.10.009
pubmed: 25466918
Mougin, J. et al. Rapid identification of Vibrio Species of the harveyi clade using MALDI-TOF MS profiling with main spectral profile database implemented with an in-house database: luvibase. Front. Microbiol. 11, 586536 (2020).
doi: 10.3389/fmicb.2020.586536
pubmed: 33162963
pmcid: 7581793
Liu, T. et al. PVBase: A MALDI-TOF MS database for fast identification and characterization of potentially pathogenic Vibrio species from multiple regions of China. Front. Microbiol. 13, 872825 (2022).
doi: 10.3389/fmicb.2022.872825
pubmed: 35656002
pmcid: 9152771
Chatterjee, S. & Haldar, S. Vibrio related diseases in aquaculture and development of rapid and accurate identification methods. J. Mar. Sci. 1, 1–7 (2012).
Jiang, C. et al. Clade 3.0: New vibrionaceae evolutionary units using genome-based approach. Curr. Microbiol. 79 (1), 10 (2021).