New Paradigm for Nano-Bio Interactions: Multimolecular Assembly of a Prototypical Disordered Protein with Ultrasmall Nanoparticles.

NMR spectroscopy intrinsically disordered proteins protein aggregation protein−nanoparticle interaction ultrasmall nanoparticles

Journal

Nano letters
ISSN: 1530-6992
Titre abrégé: Nano Lett
Pays: United States
ID NLM: 101088070

Informations de publication

Date de publication:
23 11 2022
Historique:
pubmed: 9 11 2022
medline: 25 11 2022
entrez: 8 11 2022
Statut: ppublish

Résumé

Understanding the interactions between nanoparticles (NPs) and proteins is crucial for the successful application of NPs in biological contexts. Protein adsorption is dependent on particle size, and protein binding to ultrasmall (1-3 nm) NPs is considered to be generally weak. However, most studies have involved structured biomacromolecules, while the interactions of ultrasmall NPs with intrinsically disordered proteins (IDPs) have remained elusive. IDPs are abundant in eukaryotes and found to associate with NPs intracellularly. As a model system, we focused on ultrasmall gold nanoparticles (usGNPs) and tau, a cytosolic IDP associated with Alzheimer's disease. Using site-resolved NMR, steady-state fluorescence, calorimetry, and circular dichroism, we reveal that tau and usGNPs form stable multimolecular assemblies, representing a new type of nano-bio interaction. Specifically, the observed interaction hot spots explain the influence of usGNPs on tau conformational transitions, with implications for the intracellular targeting of aberrant IDP aggregation.

Identifiants

pubmed: 36346924
doi: 10.1021/acs.nanolett.2c02902
pmc: PMC9706667
doi:

Substances chimiques

Gold 7440-57-5
Intrinsically Disordered Proteins 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

8875-8882

Références

Nanoscale Adv. 2021 Apr 28;3(11):2995-3027
pubmed: 34124577
Biochim Biophys Acta. 2011 Aug;1814(8):942-68
pubmed: 21059410
ACS Nano. 2017 Feb 28;11(2):1328-1339
pubmed: 28122180
J Phys Chem C Nanomater Interfaces. 2015 Sep 10;119(36):21035-21043
pubmed: 28626495
Nat Nanotechnol. 2012 Dec;7(12):779-86
pubmed: 23212421
Small. 2012 Mar 12;8(5):661-5
pubmed: 22213653
J Am Chem Soc. 2014 Sep 24;136(38):13158-61
pubmed: 25198387
ACS Chem Neurosci. 2020 Oct 21;11(20):3442-3454
pubmed: 33044818
Biochim Biophys Acta. 2013 May;1834(5):932-51
pubmed: 23269364
Acta Biomater. 2020 Jul 15;111:349-362
pubmed: 32413579
J Am Chem Soc. 2020 Jun 17;142(24):10730-10738
pubmed: 32426975
Sci Rep. 2020 Oct 22;10(1):18033
pubmed: 33093563
ACS Nano. 2015 Mar 24;9(3):2600-13
pubmed: 25695203
J Am Chem Soc. 2014 Aug 20;136(33):11776-82
pubmed: 25068615
Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):11361-6
pubmed: 23798407
Langmuir. 2005 Mar 15;21(6):2526-36
pubmed: 15752049
Annu Rev Biochem. 2017 Jun 20;86:27-68
pubmed: 28498720
Molecules. 2020 Jun 11;25(11):
pubmed: 32545360
Arch Biochem Biophys. 2020 Apr 15;683:108304
pubmed: 32097611
Nanoscale. 2013 Apr 7;5(7):2570-88
pubmed: 23463168
Angew Chem Int Ed Engl. 2017 Apr 3;56(15):4215-4218
pubmed: 28295888
J Am Chem Soc. 2016 Jan 13;138(1):72-5
pubmed: 26683352
Nat Nanotechnol. 2019 Sep;14(9):883-890
pubmed: 31477801
Langmuir. 2013 Aug 27;29(34):10841-9
pubmed: 23906189
Nanoscale. 2017 Mar 23;9(12):4107-4113
pubmed: 28276561
Biomaterials. 2012 Jun;33(18):4443-50
pubmed: 22459190
Bioconjug Chem. 2022 Jul 20;33(7):1261-1268
pubmed: 35686491
Bioconjug Chem. 2017 Jan 18;28(1):88-97
pubmed: 27997136
J Am Chem Soc. 2016 May 11;138(18):5789-92
pubmed: 27111298
Isr J Chem. 2019 Nov;59(11-12):962-979
pubmed: 34045771
Nano Lett. 2010 Aug 11;10(8):3101-5
pubmed: 20698623
Chem Rev. 2011 Sep 14;111(9):5610-37
pubmed: 21688848
J Am Chem Soc. 2006 Apr 26;128(16):5462-7
pubmed: 16620118
J Am Chem Soc. 2013 Apr 3;135(13):4978-81
pubmed: 23506476
Proc Natl Acad Sci U S A. 1986 Jun;83(11):4044-8
pubmed: 2424016
Nanomedicine. 2016 Aug;12(6):1663-701
pubmed: 27013135
ACS Nano. 2011 Sep 27;5(9):7155-67
pubmed: 21866933
J Biol Chem. 1986 May 5;261(13):6084-9
pubmed: 3084478
Nanoscale. 2018 Feb 15;10(7):3235-3244
pubmed: 29383361
Int J Biol Macromol. 2020 Jul 1;154:206-216
pubmed: 32179119
Trends Biochem Sci. 2008 Jan;33(1):2-8
pubmed: 18054235
Nat Mater. 2009 Jul;8(7):543-57
pubmed: 19525947
Small. 2011 Sep 19;7(18):2614-20
pubmed: 21809441
Angew Chem Int Ed Engl. 2007;46(30):5754-6
pubmed: 17591736
Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2050-5
pubmed: 17267609
Molecules. 2020 Nov 29;25(23):
pubmed: 33260436
Biochim Biophys Acta Gen Subj. 2018 Jul;1862(7):1556-1564
pubmed: 29621630

Auteurs

Giovanna Viola (G)

Department of Biotechnology, University of Verona, 37134 Verona, Italy.

Carlo Giorgio Barracchia (CG)

Department of Biotechnology, University of Verona, 37134 Verona, Italy.

Roberto Tira (R)

Department of Biotechnology, University of Verona, 37134 Verona, Italy.

Francesca Parolini (F)

Department of Biotechnology, University of Verona, 37134 Verona, Italy.

Giulia Leo (G)

Department of Biotechnology, University of Verona, 37134 Verona, Italy.

Massimo Bellanda (M)

Department of Chemistry, University of Padova, 35131 Padova, Italy.

Francesca Munari (F)

Department of Biotechnology, University of Verona, 37134 Verona, Italy.

Stefano Capaldi (S)

Department of Biotechnology, University of Verona, 37134 Verona, Italy.

Mariapina D'Onofrio (M)

Department of Biotechnology, University of Verona, 37134 Verona, Italy.

Michael Assfalg (M)

Department of Biotechnology, University of Verona, 37134 Verona, Italy.

Articles similaires

Humans Hyaluronic Acid Osteoarthritis, Hip Female Middle Aged

Conservation of the cooling agent binding pocket within the TRPM subfamily.

Kate Huffer, Matthew C S Denley, Elisabeth V Oskoui et al.
1.00
TRPM Cation Channels Animals Binding Sites Mice Pyrimidinones
Fucosyltransferases Drug Repositioning Molecular Docking Simulation Molecular Dynamics Simulation Humans
Receptor, Cannabinoid, CB1 Ligands Molecular Dynamics Simulation Protein Binding Thermodynamics

Classifications MeSH