A Photoinduced, Nickel-Catalyzed Reaction for the Stereoselective Assembly of C-Linked Glycosides and Glycopeptides.
Cross-Coupling
Glycopeptides
Glycosides
Nickel Catalysis
Photoinduced Reaction
Journal
Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543
Informations de publication
Date de publication:
26 01 2023
26 01 2023
Historique:
received:
28
09
2022
pubmed:
11
11
2022
medline:
24
1
2023
entrez:
10
11
2022
Statut:
ppublish
Résumé
C-Alkyl glycosides and glycoproteins exist in natural products and are prized for their role as carbohydrate mimics in drug design. However, a practical strategy that merges glycosyl donors with readily accessible reagents, derived from abundant carboxylic acid and amine feedstocks, is yet to be conceived. Herein, we show that a nickel catalyst promotes C-C coupling between glycosyl halides and aliphatic acids or primary amines (converted into redox-active electrophiles in one step), in the presence of Hantzsch ester and LiI (or Et
Identifiants
pubmed: 36355564
doi: 10.1002/anie.202214247
doi:
Substances chimiques
Nickel
7OV03QG267
Glycopeptides
0
Glycosides
0
Carbohydrates
0
Amines
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e202214247Informations de copyright
© 2022 Wiley-VCH GmbH.
Références
Y. Yang, B. Yu, Chem. Rev. 2017, 117, 12281-12356;
H. Liao, J. Ma, H. Yao, X.-W. Liu, Org. Biomol. Chem. 2018, 16, 1791-1806;
W. Zou, Curr. Top. Med. Chem. 2005, 5, 1363-1391.
G. Yang, J. Schmieg, M. Tsuji, R. W. Franck, Angew. Chem. Int. Ed. 2004, 43, 3818-3822;
Angew. Chem. 2004, 116, 3906-3910.
U. Tedebark, M. Meldal, L. Panza, K. Bock, Tetrahedron Lett. 1998, 39, 1815-1818;
L. Negri, R. Lattanzi, F. Tabacco, L. Orrù, C. Severini, B. Scolaro, R. Rocchi, J. Med. Chem. 1999, 42, 400-404;
C. M. Huwe, T. J. Woltering, J. Jiricek, G. Weitz-Schmidt, C. H. Wong, Bioorg. Med. Chem. 1999, 7, 773-788.
R. Hevey, Pharmaceuticals 2019, 12, 55-80.
T. P. Hogervorst, R. J. E. Li, L. Marino, S. C. M. Bruijns, N. J. Meeuwenoord, D. V. Filippov, H. S. Overkleeft, G. A. van der Marel, S. J. van Vliet, Y. van Kooyk, J. D. C. Codée, ACS Chem. Biol. 2020, 15, 728-739.
J. Schmieg, G. Yang, R. W. Franck, M. Tsuji, J. Exp. Med. 2003, 198, 1631-1641.
For selected reviews and examples, see:
C. R. Apostol, M. Hay, R. Polt, Peptides 2020, 131, 170369;
S. V. Moradi, W. M. Hussein, P. Varamini, P. Simerska, I. Toth, Chem. Sci. 2016, 7, 2492-2500;
L. Negri, R. Lattanzi, F. Tabacco, B. Scolaro, R. Rocchi, Br. J. Pharmacol. 1998, 124, 1516-1522.
M. J. McKay, H. M. Nguyen, ACS Catal. 2012, 2, 1563-1595.
For selected examples of catalytic C-alkyl glycosylation, see:
S. K. Readman, S. P. Marsden, A. Hodgsonb, Synlett 2000, 11, 1628-1630;
D. Tardieu, M. Desnoyers, C. Laye, D. Hazelard, N. Kern, P. Compain, Org. Lett. 2019, 21, 7262-7267;
H.-G. Gong, M. R. Gagné, J. Am. Chem. Soc. 2008, 130, 12177-12183;
J. S. Potuzak, D. S. Tan, Tetrahedron Lett. 2004, 45, 1797-1801;
P. Polák, J. Cossy, Chem. Eur. J. 2022, 28, e202104311;
H.-G. Gong, R. Sinisi, M. R. Gagné, J. Am. Chem. Soc. 2007, 129, 1908-1909;
J. Zeng, J. Ma, S. Xiang, S. Cai, X.-W. Liu, Angew. Chem. Int. Ed. 2013, 52, 5134-5137;
Angew. Chem. 2013, 125, 5238-5241;
R. S. Andrews, J. J. Becker, M. R. Gagné, Angew. Chem. Int. Ed. 2010, 49, 7274-7276;
Angew. Chem. 2010, 122, 7432-7434;
R. S. Andrews, J. J. Becker, M. R. Gagné, Angew. Chem. Int. Ed. 2012, 51, 4140-4143;
Angew. Chem. 2012, 124, 4216-4219;
Y. Jiang, Q. Wang, X. Zhang, M. J. Koh, Chem 2021, 7, 3377-3392;
H. Gong, R. S. Andrews, J. L. Zuccarello, S. J. Lee, M. R. Gagné, Org. Lett. 2009, 11, 879-882;
P. Ji, Y. Zhang, Y. Dong, H. Huang, Y. Wei, W. Wang, Org. Lett. 2020, 22, 1557-1562.
For selected examples of non-catalytic C-alkyl glycosylation, see:
B. Giese, J. Dupuis, Angew. Chem. Int. Ed. Engl. 1983, 22, 622-623;
Angew. Chem. 1983, 95, 633-634;
H. Abe, S. Shuto, A. Matsuda, J. Am. Chem. Soc. 2001, 123, 11870-11882;
M. Nagatomo, D. Kamimura, Y. Matsui, K. Masuda, M. Inoue, Chem. Sci. 2015, 6, 2765-2769;
P. Ji, Y.-T. Zhang, Y.-Y. Wei, H. Huang, W.-B. Hu, P. A. Mariano, W. Wang, Org. Lett. 2019, 21, 3086-3092.
W. Shang, S.-N. Su, R. Shi, Z.-D. Mou, G.-Q. Yu, X. Zhang, D. Niu, Angew. Chem. Int. Ed. 2021, 60, 385-390;
Angew. Chem. 2021, 133, 389-394.
M. J. Goldfogel, L. Huang, D. J. Weix, Cross-electrophile coupling: principles and new reactions. In nickel catalysis in synthesis: methods and reactions (Ed.: S. Ogoshi), Wiley-VCH, Weinheim, 2020, p. 352;
K. E. Poremba, S. E. Dibrell, S. E. Reisman, ACS Catal. 2020, 10, 8237-8246.
K. M. M. Huihui, J. A. Caputo, Z. Melchor, A. M. Olivares, A. M. Spiewak, K. A. Johnson, T. A. DiBenedetto, S. Kim, L. K. G. Ackerman, D. J. Weix, J. Am. Chem. Soc. 2016, 138, 5016-5019;
L. Huang, A. M. Olivares, D. J. Weix, Angew. Chem. Int. Ed. 2017, 56, 11901-11905;
Angew. Chem. 2017, 129, 12063-12067;
N. Suzuki, J. L. Hofstra, K. E. Poremba, S. E. Reisman, Org. Lett. 2017, 19, 2150-2153;
L. M. Kammer, S. O. Badir, R.-M. Hu, G. A. Molander, Chem. Sci. 2021, 12, 5450-5457;
K. Kang, D. J. Weix, Org. Lett. 2022, 24, 2853-2857;
F. Cong, X.-Y. Lv, C. S. Day, R. Martin, J. Am. Chem. Soc. 2020, 142, 20594-20599.
S. L. Rössler, B. J. Jelier, E. Magnier, G. Dagousset, E. M. Carreira, A. Togni, Angew. Chem. Int. Ed. 2020, 59, 9264-9280;
Angew. Chem. 2020, 132, 9350-9366;
J. Liao, C. H. Basch, M. E. Hoerrner, M. R. Talley, B. P. Boscoe, J. W. Tucker, M. R. Garnsey, M. P. Watson, Org. Lett. 2019, 21, 2941-2946;
J. Wang, M. E. Hoerrner, M. P. Watson, D. J. Weix, Angew. Chem. Int. Ed. 2020, 59, 13484-13489;
Angew. Chem. 2020, 132, 13586-13591;
H.-F. Yue, C. Zhu, L. Shen, Q.-Y. Geng, K. J. Hock, T.-T. Yuan, L. Cavallo, M. Rueping, Chem. Sci. 2019, 10, 4430-4435;
T. Yang, Y. Wei, M. J. Koh, ACS Catal. 2021, 11, 6519-6525;
S.-Y. Ni, C.-X. Li, Y. Mao, J.-L. Han, Y. Wang, H. Yan, Y. Pan, Sci. Adv. 2019, 5, aaw9516.
X.-L. Yu, T. Yang, S.-L. Wang, H.-L. Xu, H.-G. Gong, Org. Lett. 2011, 13, 2138-2141;
H.-L. Xu, C.-L. Zhao, Q. Qian, W. Deng, H.-G. Gong, Chem. Sci. 2013, 4, 4022-4029;
E. L. Lucas, E. R. Jarvo, Nat. Chem. Rev. 2017, 1, 0065;
R. T. Smith, X. Zhang, J. A. Rincón, J. Agejas, C. Mateos, M. Barberis, S. Garcia-Cerrada, O. de Frutos, D. W. C. MacMillan, J. Am. Chem. Soc. 2018, 140, 17433-17438;
W. Zhang, L. Lu, W. Zhang, Y. Wang, S. D. Ware, J. Mondragon, J. Rein, N. Strotman, D. Lehnherr, K. A. See, S. Lin, Nature 2022, 604, 292-297;
X. Qian, A. Auffrant, A. Felouat, C. Gosmini, Angew. Chem. Int. Ed. 2011, 50, 10402-10405;
Angew. Chem. 2011, 123, 10586-10589;
J.-H. Liu, C.-T. Yang, X.-Y. Lu, Z.-Q. Zhang, L. Xu, M. Cui, X. Lu, B. Xiao, Y. Fu, L. Liu, Chem. Eur. J. 2014, 20, 15334-15338;
Z.-Y. Liang, W.-C. Xue, K.-H. Lin, H.-G. Gong, Org. Lett. 2014, 16, 5620-5623;
H.-F. Chen, X. Jia, Y.-Y. Yu, Q. Qian, H.-G. Gong, Angew. Chem. Int. Ed. 2017, 56, 13103-13106;
Angew. Chem. 2017, 129, 13283-13286;
X.-B. Yan, C.-L. Li, W.-J. Jin, P. Guo, X.-Z. Shu, Chem. Sci. 2018, 9, 4529-4534;
K. Komeyama, T. Michiyuki, I. Osaka, ACS Catal. 2019, 9, 9285-9291;
A. B. Sanford, T. A. Thane, T. M. McGinnis, P. P. Chen, X. Hong, E. R. Jarvo, J. Am. Chem. Soc. 2020, 142, 5017-5023.
P. Ruiz-Castillo, S. L. Buchwald, Chem. Rev. 2016, 116, 12564-12649.
N. A. McGrath, M. Brichacek, J. T. Njardarson, J. Chem. Educ. 2010, 87, 1348-1349.
M. R. Garnsey, Pfizer Worldwide Research and Development, 2018.
A. J. J. Straathof, Chem. Rev. 2014, 114, 1871-1908.
P. Gallezot, Chem. Soc. Rev. 2012, 41, 1538-1558.
R. G. Spiro, Glycobiology 2002, 12, 43R-56R;
D. P. Gamblin, E. M. Scanlan, B. G. Davis, Chem. Rev. 2009, 109, 131-163.
G. E. M. Crisenza, D. Mazzarella, P. Melchiorre, J. Am. Chem. Soc. 2020, 142, 5461-5476;
Y. Wei, Q.-Q. Zhou, F. Tan, L.-Q. Lu, W.-J. Xiao, Synthesis 2019, 51, 3021-3054;
L. Zheng, L. Cai, K. Tao, Z. Xie, Y.-L. Lai, W. Guo, Asian J. Org. Chem. 2021, 10, 711-748;
Z. Yang, Y. Liu, K. Cao, X. Zhang, H. Jiang, J. Li, Beilstein J. Org. Chem. 2021, 17, 771-799;
Y.-Q. Yuan, S. Majumder, M.-H. Yang, S.-R. Guo, Tetrahedron Lett. 2020, 61, 151506;
C. G. S. Lima, T. de M. Lima, M. Duarte, I. D. Jurberg, M. W. Paixão, ACS Catal. 2016, 6, 1389-1407.
I. Colon, D. R. Kelsey, J. Org. Chem. 1986, 51, 2627-2637;
M. R. Prinsell, D. A. Everson, D. J. Weix, Chem. Commun. 2010, 46, 5743-5745;
A. H. Cherney, S. E. Reisman, J. Am. Chem. Soc. 2014, 136, 14365-14368.
J. Wu, P. S. Grant, X. Li, A. Noble, V. K. Aggarwal, Angew. Chem. Int. Ed. 2019, 58, 5697-5701;
Angew. Chem. 2019, 131, 5753-5757.
J. B. Diccianni, Q. Lin, T. Diao, Acc. Chem. Res. 2020, 53, 906-919;
J. B. Diccianni, T. Diao, Trends Chem. 2019, 1, 830-844.
L. Somsák, Chem. Rev. 2001, 101, 81-13.
J. Dupuis, B. Giese, D. Rüegge, H. Fischer, H.-G. Korth, R. Sustmann, Angew. Chem. Int. Ed. Engl. 1984, 23, 896-898;
Angew. Chem. 1984, 96, 887-888.