Fungal and fungal-like diversity in marine sediments from the maritime Antarctic assessed using DNA metabarcoding.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
06 12 2022
06 12 2022
Historique:
received:
11
09
2022
accepted:
28
11
2022
entrez:
6
12
2022
pubmed:
7
12
2022
medline:
15
12
2022
Statut:
epublish
Résumé
We assessed the fungal and fungal-like sequence diversity present in marine sediments obtained in the vicinity of the South Shetland Islands (Southern Ocean) using DNA metabarcoding through high-throughput sequencing (HTS). A total of 193,436 DNA reads were detected in sediment obtained from three locations: Walker Bay (Livingston Island) at 52 m depth (48,112 reads), Whalers Bay (Deception Island) at 151 m (104,704) and English Strait at 404 m (40,620). The DNA sequence reads were assigned to 133 distinct fungal amplicon sequence variants (ASVs) representing the phyla Ascomycota, Basidiomycota, Mortierellomycota, Chytridiomycota, Glomeromycota, Monoblepharomycota, Mucoromycota and Rozellomycota and the fungal-like Straminopila. Thelebolus balaustiformis, Pseudogymnoascus sp., Fungi sp. 1, Ciliophora sp., Agaricomycetes sp. and Chaetoceros sp. were the dominant assigned taxa. Thirty-eight fungal ASVs could only be assigned to higher taxonomic levels, and may represent taxa not currently included in the available databases or represent new taxa and/or new records for Antarctica. The total fungal community displayed high indices of diversity, richness and moderate to low dominance. However, diversity and taxa distribution varied across the three sampling sites. In Walker Bay, unidentified fungi were dominant in the sequence assemblage. Whalers Bay sediment was dominated by Antarctic endemic and cold-adapted taxa. Sediment from English Strait was dominated by Ciliophora sp. and Chaetoceros sp. These fungal assemblages were dominated by saprotrophic, plant and animal pathogenic and symbiotic taxa. The detection of an apparently rich and diverse fungal community in these marine sediments reinforces the need for further studies to characterize their richness, functional ecology and potential biotechnological applications.
Identifiants
pubmed: 36473886
doi: 10.1038/s41598-022-25310-2
pii: 10.1038/s41598-022-25310-2
pmc: PMC9726857
doi:
Substances chimiques
DNA
9007-49-2
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
21044Informations de copyright
© 2022. The Author(s).
Références
Sallée, J. B. Southern Ocean warming. Oceanography 31, 52–62 (2018).
doi: 10.5670/oceanog.2018.215
Ogaki, M. B. et al. Fungi present in Antarctic deep-sea sediments assessed using DNA metabarcoding. Microb. Ecol. 82, 157–164 (2021).
doi: 10.1007/s00248-020-01658-8
Nagano, Y. et al. Fungal diversity in deep-sea sediments–the presence of novel fungal groups. Fungal Ecol. 3, 316–325 (2010).
doi: 10.1016/j.funeco.2010.01.002
Rédou, V. et al. (2015) Species richness and adaptation of marine fungi from deep-subseafloor sediments. Appl. Environ. Microbial. 81, 3571–3583 (2015).
doi: 10.1128/AEM.04064-14
Raghukumar, C. et al. A review on deep-sea fungi: Occurrence, diversity and adaptations. Bot. Mar. 53, 479–492 (2010).
doi: 10.1515/bot.2010.076
Dickinson, I. et al. Extremophiles in an Antarctic marine ecosystem. Microorganisms 4, 8 (2016).
doi: 10.3390/microorganisms4010008
Rosa, L. H. et al. Sub-Antarctic and Antarctic marine ecosystems: an unexplored ecosystem of fungal diversity in Fungi of Antarctica: Diversity, Ecology and Biotechnological Applications (ed. Rosa, L.H.) 221–242 (2019).
Ogaki, M. B. et al. Cultivable fungi present in deep-sea sediments of Antarctica: Taxonomy, diversity, and bioprospecting of bioactive compounds. Extremophiles 24, 227–238 (2020).
doi: 10.1007/s00792-019-01148-x
Gonçalves, V. N. et al. Penicillium solitum: A mesophilic, psychrotolerant fungus present in marine sediments from Antarctica. Polar Biol. 36, 1823–1831 (2013).
doi: 10.1007/s00300-013-1403-8
Teixeira, P. C., Donagemma, G. K., Fontana, A. & Teixeira, W. G. Manual de métodos de análise de solo, 3th edn. (Centro Nacional de Pesquisa de Solos, Embrapa, 2017).
Richardson, R. T. et al. Application of ITS2 metabarcoding to determine the provenance of pollen collected by honey bees in an agroecosystem. Appl. Plant Sci. 3, 1400066 (2015).
doi: 10.3732/apps.1400066
Rosa, L. H. et al. DNA metabarcoding uncovers fungal diversity in soils of protected and non-protected areas on Deception Island Antarctica. Sci. Rep. 10, 1–9 (2020).
doi: 10.1038/s41598-020-78934-7
Rosa, L. H. et al. Fungal diversity in a sediment core from climate change impacted Boeckella Lake, Hope Bay, north-eastern Antarctic Peninsula assessed using metabarcoding. Extremophiles 26, 1–10 (2022).
doi: 10.1007/s00792-022-01264-1
White, T. J. et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications (ed Innis, M. A., Gelfand, D.H., Sninsky, J.J., White, T.J.) 315–322 (1990).
Bushnell, B. “BBMap: a fast, accurate, splice-aware aligner”. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). https://sourceforge.net/projects/bbmap (2014).
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).
doi: 10.1038/s41587-019-0209-9
Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods. 13, 581–583 (2016).
doi: 10.1038/nmeth.3869
Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 90 (2018).
doi: 10.1186/s40168-018-0470-z
Abarenkov, K. et al. UNITE QIIME release for eukaryotes. Version 04.02.2020. UNITE Community. https://doi.org/10.15156/BIO/786386 (2020).
Camacho, C. et al. BLAST+: Architecture and applications. BMC Bioinform. 10, 1–9 (2009).
doi: 10.1186/1471-2105-10-421
Huson, D. H. et al. MEGAN community edition-interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput. Biol. 12, e1004957 (2016).
doi: 10.1371/journal.pcbi.1004957
Ondov, B. D., Bergman, N. H. & Phillippy, A. M. Interactive metagenomic visualization in a web browser. BMC Bioinform. 12, 385 (2011).
doi: 10.1186/1471-2105-12-385
Babicki, S. et al. Heatmapper: Web-enabled heat mapping for all. Nucl. Acids Res. 44, 147–153 (2016).
doi: 10.1093/nar/gkw419
Medinger, R. et al. Diversity in a hidden world: Potential and limitation of next-generation sequencing for surveys of molecular diversity of eukaryotic microorganisms. Mol. Ecol. 19, 32–40 (2010).
doi: 10.1111/j.1365-294X.2009.04478.x
Weber, A. A. & Pawlowski, J. Can abundance of protists be inferred from sequence data: A case study of Foraminifera. PLoS ONE 8, e56739 (2013).
doi: 10.1371/journal.pone.0056739
Giner, C. R. et al. Environmental sequencing provides reasonable estimates of the relative abundance of specific picoeukaryotes. Appl. Environ. Microbiol. 82, 4757–4766 (2016).
doi: 10.1128/AEM.00560-16
Deiner, K. et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol. Ecol. 26, 5872–5895 (2017).
doi: 10.1111/mec.14350
Hering, D. et al. Implementation options for DNA-based identification into ecological status assessment under the European Water Framework Directive. Water Res. 138, 192–205 (2018).
doi: 10.1016/j.watres.2018.03.003
Kirk, P. M., Cannon, P. F., Minter, D. W. & Stalpers, J. A. Dictionary of the Fungi, 10th ed., CAB International, Wallingford, UK, p. 784 (2008).
Tedersoo, L. et al. High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Div. 90, 135–159 (2018).
doi: 10.1007/s13225-018-0401-0
Rosa, L. H. et al. DNA metabarcoding to assess the diversity of airborne fungi present in air over Keller Peninsula, King George Island Antarctica. Microb. Ecol. 82, 165–172 (2021).
doi: 10.1007/s00248-020-01627-1
Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).
Nguyen, N. H. et al. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).
doi: 10.1016/j.funeco.2015.06.006
Vaz, A. B. et al. The diversity, extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctica. Braz. J. Microbiol. 42, 937–947 (2011).
doi: 10.1590/S1517-83822011000300012
Gonçalves, V. N. et al. Antibacterial, antifungal and antiprotozoal activities of fungal communities present in different substrates from Antarctica. Polar Biol. 38, 1143–1152 (2015).
doi: 10.1007/s00300-015-1672-5
Laich, F., Vaca I. & Chavez R. Rhodotorula portillonensis sp. nov., a basidiomycetous yeast isolated from Antarctic shallow-water marine sediment. Int. J. Syst. Evol. Microbiol. 63, 3884–3891 (2013).
Wentzel, L. C. P. et al. Fungi from admiralty bay (King George Island, Antarctica) soils and marine sediments. Microb. Ecol. 77, 12–24 (2019).
doi: 10.1007/s00248-018-1217-x
Lopez-Garcia, P., Rodriguez-Valera, F., Pedros-Allo, C. & Moreira, D. Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409, 603–607 (2001).
doi: 10.1038/35054537
Bovio, E. et al. The culturable mycobiota associated with three Atlantic sponges, including two new species: Thelebolus balaustiformis and T. spongiae. Fungal Syst. Evol. 1, 141–167 (2018).
de Menezes, G. C. A. et al. Diversity, distribution, and ecology of fungi in the seasonal snow of Antarctica. Microorganisms 7, 445 (2019).
doi: 10.3390/microorganisms7100445
de Menezes, G. C. A. et al. Fungi in glacial ice of Antarctica: diversity, Distribution and bioprospecting of bioactive compounds. Extremophiles 24, 367–376 (2020).
doi: 10.1007/s00792-020-01161-5
Sydow, H., Petrak, F. Fungi costaricensis a cl. Prof. Alberto M. Brenes Coll. Ann. Mycol. 27, 1–86 (1929).
de Souza, L. M. D. et al. Diversity, distribution and ecology of fungal communities present in Antarctic lake sediments uncovered by DNA metabarcoding. Sci. Rep. 12, 8407 (2022).
doi: 10.1038/s41598-022-12290-6
Gonçalves, V. N. et al. Diversity and ecology of fungal assemblages present in lake sediments at Clearwater Mesa, James Ross Island, Antarctica, assessed using metabarcoding of environmental DNA. Fungal Biol. 126, 640–647 (2022).
doi: 10.1016/j.funbio.2022.08.002
Gonçalves, V. N. et al. Fungal and fungal-like diversity and ecology assessed using DNA metabarcoding along a deglaciated chronosequence soils at Clearwater Mesa, James Ross Island, Antarctic Peninsula. Biology (2022). Submitted
de Souza, L. M. D. et al. Cryptic environmental DNA fungal diversity revealed by DNA metabarcoding in historic wooden structures at Whalers Bay, Deception Island, maritime Antarctic. Brazil. J. Microbiol. (2022). Submitted
Gogorev, R. M. & Samsonov, N. I. The genus Chaetoceros (Bacillariophyta) in Arctic and Antarctic. Novosti Sist. Nizsh. Rast. 50, 56–111 (2016).
Smellie, J. L., Pankhurst, R. J., Thomson, M. R. A. & Davies, R. E.S. The geology of the South Shetland Islands: VI. Stratigraphy, geochemistry and evolution. Brit. Antarc. Sur. 87, 1–85 (1984).
de Menezes, G. C. A. et al. Fungal diversity present on rocks from a polar desert in continental Antarctica assessed using DNA metabarcoding. Extremophiles 25, 193–202 (2021).
doi: 10.1007/s00792-021-01221-4