Variable impact of geochemical gradients on the functional potential of bacteria, archaea, and phages from the permanently stratified Lac Pavin.


Journal

Microbiome
ISSN: 2049-2618
Titre abrégé: Microbiome
Pays: England
ID NLM: 101615147

Informations de publication

Date de publication:
25 01 2023
Historique:
received: 20 07 2022
accepted: 07 11 2022
entrez: 24 1 2023
pubmed: 25 1 2023
medline: 27 1 2023
Statut: epublish

Résumé

Permanently stratified lakes contain diverse microbial communities that vary with depth and so serve as useful models for studying the relationships between microbial community structure and geochemistry. Recent work has shown that these lakes can also harbor numerous bacteria and archaea from novel lineages, including those from the Candidate Phyla Radiation (CPR). However, the extent to which geochemical stratification differentially impacts carbon metabolism and overall genetic potential in CPR bacteria compared to other organisms is not well defined. Here, we determine the distribution of microbial lineages along an oxygen gradient in Lac Pavin, a deep, stratified lake in central France, and examine the influence of this gradient on their metabolism. Genome-based analyses revealed an enrichment of distinct C1 and CO Overall, our analyses suggest that environmental gradients in Lac Pavin select for capacities of CPR bacteria and phages to a lesser extent than for other bacteria and archaea. This may be due to the fact that selection in the former groups is indirect and depends primarily on host characteristics. Video Abstract.

Sections du résumé

BACKGROUND
Permanently stratified lakes contain diverse microbial communities that vary with depth and so serve as useful models for studying the relationships between microbial community structure and geochemistry. Recent work has shown that these lakes can also harbor numerous bacteria and archaea from novel lineages, including those from the Candidate Phyla Radiation (CPR). However, the extent to which geochemical stratification differentially impacts carbon metabolism and overall genetic potential in CPR bacteria compared to other organisms is not well defined.
RESULTS
Here, we determine the distribution of microbial lineages along an oxygen gradient in Lac Pavin, a deep, stratified lake in central France, and examine the influence of this gradient on their metabolism. Genome-based analyses revealed an enrichment of distinct C1 and CO
CONCLUSIONS
Overall, our analyses suggest that environmental gradients in Lac Pavin select for capacities of CPR bacteria and phages to a lesser extent than for other bacteria and archaea. This may be due to the fact that selection in the former groups is indirect and depends primarily on host characteristics. Video Abstract.

Identifiants

pubmed: 36694212
doi: 10.1186/s40168-022-01416-7
pii: 10.1186/s40168-022-01416-7
pmc: PMC9875498
doi:

Substances chimiques

Oxygen S88TT14065
Water 059QF0KO0R
Methane OP0UW79H66

Types de publication

Video-Audio Media Journal Article Research Support, Non-U.S. Gov't Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

14

Subventions

Organisme : NIH HHS
ID : S10 OD018174
Pays : United States

Informations de copyright

© 2023. The Author(s).

Références

ISME J. 2012 Sep;6(9):1640-52
pubmed: 22418623
ISME J. 2016 Nov;10(11):2702-2714
pubmed: 27137126
Bioinformatics. 2010 Oct 1;26(19):2460-1
pubmed: 20709691
Microbiome. 2020 Aug 9;8(1):116
pubmed: 32772914
Arch Microbiol. 2005 Oct;184(1):41-8
pubmed: 16075199
mBio. 2018 Aug 14;9(4):
pubmed: 30108167
Nat Microbiol. 2021 Mar;6(3):354-365
pubmed: 33495623
Genome Biol. 2021 Jun 13;22(1):178
pubmed: 34120611
PeerJ. 2015 Oct 08;3:e1319
pubmed: 26500826
Environ Microbiol Rep. 2012 Feb;4(1):29-35
pubmed: 23757226
PeerJ. 2019 Jul 26;7:e7359
pubmed: 31388474
Geobiology. 2014 Sep;12(5):451-68
pubmed: 24976102
PLoS One. 2012;7(8):e43346
pubmed: 22927959
J Environ Sci (China). 2017 Mar;53:48-59
pubmed: 28372760
Nat Microbiol. 2020 Dec;5(12):1504-1515
pubmed: 32839536
Microbiome. 2020 Jun 10;8(1):90
pubmed: 32522236
Science. 2012 Sep 28;337(6102):1661-5
pubmed: 23019650
mSystems. 2022 Apr 26;7(2):e0022322
pubmed: 35353011
ISME J. 2022 Aug;16(8):2056-2059
pubmed: 35440729
Microbiome. 2017 Sep 2;5(1):112
pubmed: 28865481
Nat Microbiol. 2018 Jul;3(7):836-843
pubmed: 29807988
Microbiome. 2022 Feb 16;10(1):33
pubmed: 35172890
Mol Biol Evol. 2013 Apr;30(4):772-80
pubmed: 23329690
Microbiome. 2013 Aug 05;1(1):22
pubmed: 24450983
Bioinformatics. 2015 May 15;31(10):1674-6
pubmed: 25609793
ISME J. 2021 Apr;15(4):981-998
pubmed: 33199808
Nat Commun. 2017 Jan 13;8:14007
pubmed: 28082747
Nat Biotechnol. 2021 May;39(5):578-585
pubmed: 33349699
BMC Evol Biol. 2010 Jul 13;10:210
pubmed: 20626897
Nat Microbiol. 2022 Jun;7(6):918-927
pubmed: 35618772
Curr Biol. 2015 Mar 16;25(6):690-701
pubmed: 25702576
ISME J. 2017 Dec;11(12):2864-2868
pubmed: 28742071
Res Microbiol. 2011 Nov;162(9):832-47
pubmed: 21704700
Science. 2007 Feb 16;315(5814):1003-6
pubmed: 17303759
ISME J. 2012 Nov;6(11):2119-27
pubmed: 22648129
Arch Microbiol. 2010 Jul;192(7):559-67
pubmed: 20495786
ISME J. 2022 May;16(5):1348-1362
pubmed: 34987183
Geobiology. 2011 Jul;9(4):321-9
pubmed: 21682840
Nat Methods. 2021 Apr;18(4):366-368
pubmed: 33828273
Nat Commun. 2021 Jun 9;12(1):3503
pubmed: 34108477
Nat Rev Microbiol. 2018 Oct;16(10):629-645
pubmed: 30181663
Genome Res. 2003 Nov;13(11):2498-504
pubmed: 14597658
Microb Ecol. 2015 Oct;70(3):596-611
pubmed: 25912922
Nat Commun. 2016 Oct 24;7:13219
pubmed: 27774985
Environ Microbiol. 2019 Dec;21(12):4740-4754
pubmed: 31608575
Bioinformatics. 2012 Jun 1;28(11):1420-8
pubmed: 22495754
Nat Methods. 2012 Mar 04;9(4):357-9
pubmed: 22388286
Appl Environ Microbiol. 2007 Mar;73(6):2016-9
pubmed: 17261512
Mol Biol Evol. 2020 May 1;37(5):1530-1534
pubmed: 32011700
Microbiome. 2021 Feb 1;9(1):37
pubmed: 33522966
Cell Rep. 2020 Jul 21;32(3):107939
pubmed: 32698001
Genome Res. 2015 Jul;25(7):1043-55
pubmed: 25977477
mBio. 2021 Aug 31;12(4):e0052121
pubmed: 34253055
Bioinformatics. 2009 Aug 1;25(15):1972-3
pubmed: 19505945
Nat Commun. 2021 Apr 28;12(1):2454
pubmed: 33911080
FEMS Microbiol Ecol. 2011 Sep;77(3):533-45
pubmed: 21595728
BMC Biol. 2020 Jun 19;18(1):69
pubmed: 32560683
Nature. 2015 Jul 9;523(7559):208-11
pubmed: 26083755
Nature. 2020 Feb;578(7795):425-431
pubmed: 32051592
FEMS Microbiol Ecol. 2003 Jul 1;45(2):189-202
pubmed: 19719630
Environ Microbiome. 2021 Dec 14;16(1):24
pubmed: 34906246
Cell. 2018 Mar 8;172(6):1181-1197
pubmed: 29522741
ISME J. 2021 Jul;15(7):1971-1986
pubmed: 33564113
ISME J. 2015 Dec;9(12):2642-56
pubmed: 25932617
Mol Biol Evol. 2004 Jul;21(7):1234-41
pubmed: 15014146
BMC Bioinformatics. 2010 Mar 08;11:119
pubmed: 20211023
Bioinformatics. 2019 Nov 15;:
pubmed: 31730192
Genome Biol. 2013 Nov 07;14(11):R123
pubmed: 24200126
Nat Microbiol. 2019 Aug;4(8):1356-1367
pubmed: 31110364
PLoS One. 2016 Mar 02;11(3):e0150847
pubmed: 26934492
Bioinformatics. 2020 Apr 1;36(7):2251-2252
pubmed: 31742321
Proc Natl Acad Sci U S A. 2011 Sep 27;108(39):E757-64
pubmed: 21844365
Mol Biol Evol. 2019 Mar 1;36(3):435-446
pubmed: 30544151
Nat Biotechnol. 2019 Jun;37(6):632-639
pubmed: 31061483
Biochemistry. 2019 Aug 6;58(31):3365-3376
pubmed: 31259528
Nat Commun. 2019 Sep 13;10(1):4173
pubmed: 31519891

Auteurs

Alexander L Jaffe (AL)

Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.

Corinne Bardot (C)

Laboratoire Microorganismes: Génome et Environnement (LMGE), UMR CNRS 6023, Université Clermont-Auvergne, F-63000, Clermont-Ferrand, France.

Anne-Hélène Le Jeune (AH)

Laboratoire Microorganismes: Génome et Environnement (LMGE), UMR CNRS 6023, Université Clermont-Auvergne, F-63000, Clermont-Ferrand, France.

Jett Liu (J)

Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.

Jonathan Colombet (J)

Laboratoire Microorganismes: Génome et Environnement (LMGE), UMR CNRS 6023, Université Clermont-Auvergne, F-63000, Clermont-Ferrand, France.

Fanny Perrière (F)

Laboratoire Microorganismes: Génome et Environnement (LMGE), UMR CNRS 6023, Université Clermont-Auvergne, F-63000, Clermont-Ferrand, France.

Hermine Billard (H)

Laboratoire Microorganismes: Génome et Environnement (LMGE), UMR CNRS 6023, Université Clermont-Auvergne, F-63000, Clermont-Ferrand, France.

Cindy J Castelle (CJ)

Innovative Genomics Institute, University of California, Berkeley, CA, USA.

Anne-Catherine Lehours (AC)

Laboratoire Microorganismes: Génome et Environnement (LMGE), UMR CNRS 6023, Université Clermont-Auvergne, F-63000, Clermont-Ferrand, France.

Jillian F Banfield (JF)

Innovative Genomics Institute, University of California, Berkeley, CA, USA. jbanfield@berkeley.edu.
Department of Earth and Planetary Science, University of California, Berkeley, CA, USA. jbanfield@berkeley.edu.
Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA. jbanfield@berkeley.edu.
Chan Zuckerberg Biohub, San Francisco, CA, USA. jbanfield@berkeley.edu.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Animals Hemiptera Insect Proteins Phylogeny Insecticides
Populus Soil Microbiology Soil Microbiota Fungi
Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins

Classifications MeSH