Towards control of excitonic coupling in DNA-templated Cy5 aggregates: the principal role of chemical substituent hydrophobicity and steric interactions.
Journal
Nanoscale
ISSN: 2040-3372
Titre abrégé: Nanoscale
Pays: England
ID NLM: 101525249
Informations de publication
Date de publication:
16 Feb 2023
16 Feb 2023
Historique:
pubmed:
2
2
2023
medline:
18
2
2023
entrez:
1
2
2023
Statut:
epublish
Résumé
Understanding and controlling exciton coupling in dye aggregates has become a greater focus as potential applications such as coherent exciton devices, nanophotonics, and biosensing have been proposed. DNA nanostructure templates allow for a powerful modular approach. Using DNA Holliday junction (HJ) templates variations of dye combinations and precision dye positions can be rapidly assayed, as well as creating aggregates of dyes that could not be prepared (either due to excess or lack of solubility) through alternative means. Indodicarbocyanines (Cy5) have been studied in coupled systems due to their large transition dipole moment, which contributes to strong coupling. Cy5-R dyes were recently prepared by chemically modifying the 5,5'-substituents of indole rings, resulting in varying dye hydrophobicity/hydrophilicity, steric considerations, and electron-donating/withdrawing character. We utilized Cy5-R dyes to examine the formation and properties of 30 unique DNA templated homodimers. We find that in our system the sterics of Cy5-R dyes play the determining factor in orientation and coupling strength of dimers, with coupling strengths ranging from 50-138 meV. The hydrophobic properties of the Cy5-R modify the percentage of dimers formed, and have a secondary role in determining the packing characteristics of the dimers when sterics are equivalent. Similar to other reports, we find that positioning of the Cy5-R within the HJ template can favor particular dimer interactions, specifically oblique or H-type dimers.
Identifiants
pubmed: 36723027
doi: 10.1039/d2nr05544a
pmc: PMC9932853
doi:
Substances chimiques
cyanine dye 5
0
DNA
9007-49-2
Carbocyanines
0
Coloring Agents
0
DNA, Cruciform
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3284-3299Subventions
Organisme : NIBIB NIH HHS
ID : R00 EB030013
Pays : United States
Références
J Phys Chem Lett. 2022 Sep 1;13(34):8010-8018
pubmed: 35984918
ACS Nano. 2022 Jan 25;16(1):1301-1307
pubmed: 34979076
Chemistry. 2006 May 3;12(14):3821-8
pubmed: 16514687
Nano Lett. 2017 Mar 8;17(3):1719-1726
pubmed: 28165244
J Phys Chem B. 2018 May 17;122(19):5020-5029
pubmed: 29698610
ACS Omega. 2022 Mar 22;7(13):11002-11016
pubmed: 35415341
Phys Chem Chem Phys. 2020 Feb 7;22(5):3048-3057
pubmed: 31960856
J Phys Chem B. 2021 Sep 16;125(36):10240-10259
pubmed: 34473494
Philos Trans A Math Phys Eng Sci. 2012 Aug 13;370(1972):3819-26
pubmed: 22753828
Chem Phys. 2008 Aug 22;357(1-3):79-84
pubmed: 20617102
J Phys Chem Lett. 2022 Mar 31;13(12):2782-2791
pubmed: 35319215
J Phys Chem Lett. 2020 May 21;11(10):4163-4172
pubmed: 32391695
J Phys Chem B. 2022 Aug 11;126(31):5727-5729
pubmed: 35950302
Phys Chem Chem Phys. 2016 Jul 27;18(30):20615-26
pubmed: 27412764
J Am Chem Soc. 2002 Aug 14;124(32):9431-47
pubmed: 12167038
Acc Chem Res. 2017 Feb 21;50(2):341-350
pubmed: 28145688
J Phys Chem A. 2016 Dec 22;120(50):9941-9947
pubmed: 27934475
J Phys Chem C Nanomater Interfaces. 2022 Oct 13;126(40):17164-17175
pubmed: 36268205
Angew Chem Int Ed Engl. 2011 Apr 4;50(15):3376-410
pubmed: 21442690
Angew Chem Int Ed Engl. 2018 Nov 26;57(48):15696-15701
pubmed: 30338635
J Phys Chem A. 2012 May 10;116(18):4473-84
pubmed: 22510065
Chem Sci. 2020 Jun 5;11(26):6758-6765
pubmed: 34094127
Chem Soc Rev. 2007 Jun;36(6):914-31
pubmed: 17534478
Faraday Discuss. 2013;163:341-51; discussion 393-432
pubmed: 24020210
J Phys Chem C Nanomater Interfaces. 2022 Feb 24;126(7):3475-3488
pubmed: 35242270
J Phys Chem B. 2020 Oct 29;124(43):9636-9647
pubmed: 33052691
J Phys Chem B. 2021 Dec 23;125(50):13670-13684
pubmed: 34894675
Nanoscale. 2020 Jun 11;12(22):11858-11862
pubmed: 32484195
J Phys Chem Lett. 2018 Jul 5;9(13):3654-3659
pubmed: 29893572
J Chem Biol. 2010 Mar;3(1):37-44
pubmed: 19779939
J Phys Chem A. 2021 Nov 11;125(44):9632-9644
pubmed: 34709821
Adv Mater. 2014 Feb;26(5):739-45
pubmed: 24306899
J Phys Chem B. 2020 Sep 17;124(37):8042-8049
pubmed: 32706583
J Phys Chem A. 2018 Nov 21;122(46):8989-8997
pubmed: 30380862
J Phys Chem B. 2014 Dec 18;118(50):14555-65
pubmed: 25397906
ACS Nano. 2021 Oct 26;15(10):16452-16468
pubmed: 34609842
Faraday Discuss. 2019 Jul 11;216(0):211-235
pubmed: 31038134
Angew Chem Int Ed Engl. 2010 Jul 26;49(32):5502-6
pubmed: 20602380
Nat Commun. 2022 Jun 3;13(1):3112
pubmed: 35662248
Bioconjug Chem. 2016 Mar 16;27(3):840-8
pubmed: 26895222
J Phys Chem A. 2018 Mar 1;122(8):2086-2095
pubmed: 29420037
Angew Chem Int Ed Engl. 2017 Sep 4;56(37):11252-11257
pubmed: 28493621
Langmuir. 2011 Feb 15;27(4):1472-9
pubmed: 21174432
J Phys Chem B. 2022 Jan 13;126(1):110-122
pubmed: 34962787
ACS Omega. 2018 Aug 17;3(8):9348-9359
pubmed: 31459068
J Phys Chem A. 2017 Sep 21;121(37):6905-6916
pubmed: 28813152
J Phys Chem Lett. 2019 May 16;10(10):2386-2392
pubmed: 31010285
Int J Mol Sci. 2022 Jul 12;23(14):
pubmed: 35887059
J Med Chem. 2021 Jun 24;64(12):8798-8805
pubmed: 34081463
ACS Nano. 2018 Jul 24;12(7):6410-6420
pubmed: 29920202
Radiat Res. 1963 Sep;20:55-70
pubmed: 14061481
PLoS One. 2014 Jan 15;9(1):e85605
pubmed: 24454899