Structural Basis for Agonistic Activity and Selectivity toward Melatonin Receptors
drug design
glaucoma
melatonergic agonists
melatonin receptors
molecular docking
molecular dynamics
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
02 Feb 2023
02 Feb 2023
Historique:
received:
13
01
2023
revised:
30
01
2023
accepted:
31
01
2023
entrez:
11
2
2023
pubmed:
12
2
2023
medline:
15
2
2023
Statut:
epublish
Résumé
Glaucoma, a major ocular neuropathy originating from a progressive degeneration of retinal ganglion cells, is often associated with increased intraocular pressure (IOP). Daily IOP fluctuations are physiologically influenced by the antioxidant and signaling activities of melatonin. This endogenous modulator has limited employment in treating altered IOP disorders due to its low stability and bioavailability. The search for low-toxic compounds as potential melatonin agonists with higher stability and bioavailability than melatonin itself could start only from knowing the molecular basis of melatonergic activity. Thus, using a computational approach, we studied the melatonin binding toward its natural macromolecular targets, namely melatonin receptors 1 (MT1) and 2 (MT2), both involved in IOP signaling regulation. Besides, agomelatine, a melatonin-derivative agonist and, at the same time, an atypical antidepressant, was also included in the study due to its powerful IOP-lowering effects. For both ligands, we evaluated both stability and ligand positioning inside the orthosteric site of MTs, mapping the main molecular interactions responsible for receptor activation. Affinity values in terms of free binding energy (ΔG
Identifiants
pubmed: 36769183
pii: ijms24032863
doi: 10.3390/ijms24032863
pmc: PMC9918025
pii:
doi:
Substances chimiques
Receptors, Melatonin
0
Receptor, Melatonin, MT1
0
Melatonin
JL5DK93RCL
Ligands
0
Receptor, Melatonin, MT2
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Références
Protein Sci. 2006 Jun;15(6):1318-33
pubmed: 16731967
Cell. 2018 Jan 11;172(1-2):68-80.e12
pubmed: 29290469
Nature. 2019 May;569(7755):289-292
pubmed: 31019305
Int J Mol Sci. 2013 Apr 25;14(5):8948-62
pubmed: 23698757
Nucleic Acids Res. 2019 Jan 8;47(D1):D506-D515
pubmed: 30395287
Trends Biochem Sci. 2009 Nov;34(11):540-52
pubmed: 19836958
Prog Retin Eye Res. 2020 Mar;75:100798
pubmed: 31560946
Trends Pharmacol Sci. 2015 Jan;36(1):22-31
pubmed: 25541108
J Comput Chem. 2014 Oct 15;35(27):1997-2004
pubmed: 25130509
Protein Sci. 1998 Sep;7(9):1884-97
pubmed: 9761470
J Comput Chem. 2016 Oct 15;37(27):2436-46
pubmed: 27510546
J Chem Inf Model. 2008 Apr;48(4):889-901
pubmed: 18396858
Naunyn Schmiedebergs Arch Pharmacol. 1997 Mar;355(3):365-75
pubmed: 9089668
J Pharmacol Pharmacother. 2010 Jul;1(2):122-3
pubmed: 21350627
IEEE EMBS Int Conf Biomed Health Inform. 2018 Mar;2018:263-266
pubmed: 30272056
J Chem Inf Model. 2021 Aug 23;61(8):3891-3898
pubmed: 34278794
PLoS One. 2007 Sep 12;2(9):e880
pubmed: 17849009
Int J Biol Macromol. 2020 Oct 1;160:1090-1100
pubmed: 32485258
Pac Symp Biocomput. 1996;:272-87
pubmed: 9390238
Br J Pharmacol. 2018 Aug;175(16):3190-3199
pubmed: 29318587
J Comput Chem. 2004 Oct;25(13):1605-12
pubmed: 15264254
Neuropharmacology. 2015 Apr;91:142-7
pubmed: 25534555
Proc Natl Acad Sci U S A. 2016 Aug 30;113(35):9928-33
pubmed: 27543332
Int J Mol Sci. 2013 Apr 12;14(4):8093-121
pubmed: 23584026
J Comput Chem. 2009 Dec;30(16):2785-91
pubmed: 19399780
J Chem Theory Comput. 2015 Aug 11;11(8):3696-713
pubmed: 26574453
J Circadian Rhythms. 2008 Jan 10;6:1
pubmed: 18186932
Phys Rev A Gen Phys. 1985 Mar;31(3):1695-1697
pubmed: 9895674
J Pharmacol Exp Ther. 1998 Jun;285(3):1239-45
pubmed: 9618428
Nucleic Acids Res. 2000 Jan 1;28(1):235-42
pubmed: 10592235
J Pharmacol Exp Ther. 2016 Mar;356(3):681-92
pubmed: 26759496
Science. 2019 May 24;364(6442):775-778
pubmed: 31072904
Front Pharmacol. 2018 Aug 22;9:923
pubmed: 30186166
J Pineal Res. 2012 Mar;52(2):139-66
pubmed: 22034907
Gen Comp Endocrinol. 2005 May 15;142(1-2):94-101
pubmed: 15862553
Nature. 2011 Jul 19;477(7366):549-55
pubmed: 21772288
Trends Pharmacol Sci. 2009 May;30(5):249-59
pubmed: 19375807
J Pineal Res. 2011 Jan;50(1):1-7
pubmed: 21073517
Heliyon. 2020 Mar 24;6(3):e03648
pubmed: 32258489
Pharmacol Ther. 2014 Jul;143(1):51-60
pubmed: 24561131
Elife. 2019 Dec 19;8:
pubmed: 31855179
Science. 2007 Nov 23;318(5854):1258-65
pubmed: 17962520
J Comput Chem. 2008 Aug;29(11):1859-65
pubmed: 18351591
Front Mol Biosci. 2018 Jan 10;4:87
pubmed: 29367919
J Comput Chem. 2010 Jan 30;31(2):455-61
pubmed: 19499576
J Chem Theory Comput. 2017 Apr 11;13(4):1518-1524
pubmed: 28267328
J Pharmacol Exp Ther. 1985 Aug;234(2):395-401
pubmed: 2991499
Nat Neurosci. 2020 Apr;23(4):565-574
pubmed: 32094970
Biomolecules. 2021 Feb 24;11(3):
pubmed: 33668357
Curr Med Chem. 2012;19(8):1090-109
pubmed: 22300046
IUCrJ. 2019 Oct 24;6(Pt 6):1106-1119
pubmed: 31709066
Recept Channels. 1994;2(1):1-7
pubmed: 8081729
Molecules. 2017 Nov 22;22(11):
pubmed: 29165360
Protein Eng. 1994 Feb;7(2):195-203
pubmed: 8170923
JAMA. 2014 May 14;311(18):1901-11
pubmed: 24825645
Nucleic Acids Res. 2018 Jul 2;46(W1):W363-W367
pubmed: 29860391
Nature. 2019 May;569(7755):284-288
pubmed: 31019306
Elife. 2020 Mar 02;9:
pubmed: 32118583
J Neuropsychiatry Clin Neurosci. 2013 Summer;25(3):205-13
pubmed: 24026713
Nucleic Acids Res. 2012 Jan;40(Database issue):D370-6
pubmed: 21890895
Mol Pharmacol. 2003 Jun;63(6):1256-72
pubmed: 12761335
Naunyn Schmiedebergs Arch Pharmacol. 2003 Jun;367(6):553-61
pubmed: 12764576
Sci Rep. 2017 Nov 14;7(1):15495
pubmed: 29138525
J Biol Chem. 2010 Feb 5;285(6):3973-3985
pubmed: 19920139
J Biomol Struct Dyn. 2022 Aug 13;:1-10
pubmed: 35968630
Nucleic Acids Res. 2015 Jul 1;43(W1):W443-7
pubmed: 25873628
Curr Opin Struct Biol. 2019 Apr;55:114-120
pubmed: 31082695