Dual specificity and target gene selection by the MADS-domain protein FRUITFULL.
Journal
Nature plants
ISSN: 2055-0278
Titre abrégé: Nat Plants
Pays: England
ID NLM: 101651677
Informations de publication
Date de publication:
03 2023
03 2023
Historique:
received:
26
04
2022
accepted:
11
01
2023
pubmed:
17
2
2023
medline:
23
3
2023
entrez:
16
2
2023
Statut:
ppublish
Résumé
How transcription factors attain their target gene specificity and how this specificity may be modulated, acquiring different regulatory functions through the development of plant tissues, is an open question. Here we characterized different regulatory roles of the MADS-domain transcription factor FRUITFULL (FUL) in flower development and mechanisms modulating its activity. We found that the dual role of FUL in regulating floral transition and pistil development is associated with its different in vivo patterns of DNA binding in both tissues. Characterization of FUL protein complexes by liquid chromatography-tandem mass spectrometry and SELEX-seq experiments shows that aspects of tissue-specific target site selection can be predicted by tissue-specific variation in the composition of FUL protein complexes with different DNA binding specificities, without considering the chromatin status of the target region. This suggests a role for dynamic changes in FUL TF complex composition in reshaping the regulatory functions of FUL during flower development.
Identifiants
pubmed: 36797351
doi: 10.1038/s41477-023-01351-x
pii: 10.1038/s41477-023-01351-x
doi:
Substances chimiques
Plant Proteins
0
MADS Domain Proteins
0
Transcription Factors
0
DNA
9007-49-2
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
473-485Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Ludwig, L. S. et al. Transcriptional states and chromatin accessibility underlying human erythropoiesis. Cell Rep. 27, 3228–3240.e7 (2019).
pubmed: 31189107
pmcid: 6579117
doi: 10.1016/j.celrep.2019.05.046
Argelaguet, R. et al. Multi-omics profiling of mouse gastrulation at single-cell resolution. Nature 576, 487–491 (2019).
pubmed: 31827285
pmcid: 6924995
doi: 10.1038/s41586-019-1825-8
Pawlak, M. et al. Dynamics of cardiomyocyte transcriptome and chromatin landscape demarcates key events of heart development. Genome Res. 29, 506–519 (2019).
pubmed: 30760547
pmcid: 6396412
doi: 10.1101/gr.244491.118
Ibarra, I. L. et al. Mechanistic insights into transcription factor cooperativity and its impact on protein–phenotype interactions. Nat. Commun. 11, 124 (2020).
pubmed: 31913281
pmcid: 6949242
doi: 10.1038/s41467-019-13888-7
Slattery, M. et al. Cofactor binding evokes latent differences in DNA binding specificity between Hox proteins. Cell 147, 1270–1282 (2011).
pubmed: 22153072
pmcid: 3319069
doi: 10.1016/j.cell.2011.10.053
Smaczniak, C., Muiño, J. M., Chen, D., Angenent, G. C. & Kaufmann, K. Differences in DNA binding specificity of floral homeotic protein complexes predict organ-specific target genes. Plant Cell 29, 1822–1835 (2017).
pubmed: 28733422
pmcid: 5590503
doi: 10.1105/tpc.17.00145
Smaczniak, C., Immink, R. G. H., Angenent, G. C. & Kaufmann, K. Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies. Development 139, 3081–3098 (2012).
pubmed: 22872082
doi: 10.1242/dev.074674
Schwarz-Sommer, Z. et al. Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens: evidence for DNA binding and autoregulation of its persistent expression throughout flower development. EMBO J. 11, 251–263 (1992).
pubmed: 1346760
pmcid: 556446
doi: 10.1002/j.1460-2075.1992.tb05048.x
Huang, H. et al. DNA binding properties of two Arabidopsis MADS domain proteins: binding consensus and dimer formation. Plant Cell 8, 81–94 (1996).
pubmed: 8597661
pmcid: 161083
de Folter, S. et al. Comprehensive interaction map of the Arabidopsis MADS box transcription factors. Plant Cell 17, 1424–1433 (2005).
pubmed: 15805477
pmcid: 1091765
doi: 10.1105/tpc.105.031831
Folter, Sde & Angenent, G. C. trans meets cis in MADS science. Trends Plant Sci. 11, 224–231 (2006).
pubmed: 16616581
doi: 10.1016/j.tplants.2006.03.008
Theißen, G. Development of floral organ identity: stories from the MADS house. Curr. Opin. Plant Biol. 4, 75–85 (2001).
pubmed: 11163172
doi: 10.1016/S1369-5266(00)00139-4
Airoldi, C. A., Bergonzi, S. & Davies, B. Single amino acid change alters the ability to specify male or female organ identity. Proc. Natl Acad. Sci. USA 107, 18898–18902 (2010).
pubmed: 20956314
pmcid: 2973880
doi: 10.1073/pnas.1009050107
Que, K. et al. Regulatory switch enforced by basic helix–loop–helix and ACT-domain mediated dimerizations of the maize transcription factor R. Proc. Natl Acad. Sci. USA 109, E2091–E2097 (2012).
Camille, S. et al. A promiscuous intermediate underlies the evolution of LEAFY DNA binding specificity. Science 343, 645–648 (2014).
doi: 10.1126/science.1248229
Lai, X. et al. The intervening domain is required for DNA-binding and functional identity of plant MADS transcription factors. Nat. Commun. 12, 4760 (2021).
pubmed: 34362909
pmcid: 8346517
doi: 10.1038/s41467-021-24978-w
Bemer, M. et al. FRUITFULL controls SAUR10 expression and regulates Arabidopsis growth and architecture. J. Exp. Bot. 68, 3391–3403 (2017).
pubmed: 28586421
pmcid: 5853401
doi: 10.1093/jxb/erx184
Mandel, M. A. & Yanofsky, M. F. The Arabidopsis AGL8 MADS box gene is expressed in inflorescence meristems and is negatively regulated by APETALA1. Plant Cell 7, 1763–1771 (1995).
pubmed: 8535133
pmcid: 161036
Hempel, F. D. et al. Floral determination and expression of floral regulatory genes in Arabidopsis. Development 124, 3845–3853 (1997).
pubmed: 9367440
doi: 10.1242/dev.124.19.3845
Ferrandiz, C., Gu, Q., Martienssen, R. & Yanofsky, M. F. Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 127, 725–734 (2000).
pubmed: 10648231
doi: 10.1242/dev.127.4.725
Balanzà, V., Martínez-Fernández, I. & Ferrándiz, C. Sequential action of FRUITFULL as a modulator of the activity of the floral regulators SVP and SOC1. J. Exp. Bot. 65, 1193–1203 (2014).
pubmed: 24465009
pmcid: 3935574
doi: 10.1093/jxb/ert482
Balanzà, V. et al. Genetic control of meristem arrest and life span in Arabidopsis by a FRUITFULL-APETALA2 pathway. Nat. Commun. 9, 565 (2018).
pubmed: 29422669
pmcid: 5805735
doi: 10.1038/s41467-018-03067-5
Balanzà, V., Martínez-Fernández, I., Sato, S., Yanofsky, M. F. & Ferrándiz, C. Inflorescence meristem fate is dependent on seed development and FRUITFULL in Arabidopsis thaliana. Front. Plant Sci. 10, 1622 (2019).
pubmed: 31921264
pmcid: 6930240
doi: 10.3389/fpls.2019.01622
Ferrándiz, C., Liljegren, S. J. & Yanofsky, M. F. Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development. Science 289, 436–438 (2000).
pubmed: 10903201
doi: 10.1126/science.289.5478.436
Liljegren, S. J. et al. SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404, 766–770 (2000).
pubmed: 10783890
doi: 10.1038/35008089
Roeder, A. H. K., Ferrándiz, C. & Yanofsky, M. F. The role of the REPLUMLESS homeodomain protein in patterning the Arabidopsis fruit. Curr. Biol. 13, 1630–1635 (2003).
pubmed: 13678595
doi: 10.1016/j.cub.2003.08.027
Liljegren, S. J. et al. Control of fruit patterning in Arabidopsis by INDEHISCENT. Cell 116, 843–853 (2004).
pubmed: 15035986
doi: 10.1016/S0092-8674(04)00217-X
Gu, Q., Ferrandiz, C., Yanofsky, M. F. & Martienssen, R. The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125, 1509–1517 (1998).
pubmed: 9502732
doi: 10.1242/dev.125.8.1509
Di Marzo, M. et al. SEEDSTICK controls Arabidopsis fruit size by regulating cytokinin levels and FRUITFULL. Cell Rep. 30, 2846–2857.e3 (2020).
pubmed: 32101756
doi: 10.1016/j.celrep.2020.01.101
José Ripoll, J. et al. microRNA regulation of fruit growth. Nat. Plants 1, 15036 (2015).
pubmed: 27247036
doi: 10.1038/nplants.2015.36
Smaczniak, C. et al. Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development. Proc. Natl Acad. Sci. USA 109, 1560–1565 (2012).
pubmed: 22238427
pmcid: 3277181
doi: 10.1073/pnas.1112871109
Smyth, D. R., Bowman, J. L. & Meyerowitz, E. M. Early flower development in Arabidopsis. Plant Cell 2, 755–767 (1990).
pubmed: 2152125
pmcid: 159928
Sudre, D. et al. Iron-dependent modifications of the flower transcriptome, proteome, metabolome, and hormonal content in an Arabidopsis ferritin mutant. J. Exp. Bot. 64, 2665–2688 (2013).
pubmed: 23682113
pmcid: 3697946
doi: 10.1093/jxb/ert112
Carbonell-Bejerano, P., Urbez, C., Carbonell, J., Granell, A. & Perez-Amador, M. A. A fertilization-independent developmental program triggers partial fruit development and senescence processes in pistils of Arabidopsis. Plant Physiol. 154, 163–172 (2010).
pubmed: 20625003
pmcid: 2938164
doi: 10.1104/pp.110.160044
Marsch-Martínez, N. & de Folter, S. Hormonal control of the development of the gynoecium. Curr. Opin. Plant Biol. 29, 104–114 (2016).
pubmed: 26799132
doi: 10.1016/j.pbi.2015.12.006
Kashkan, I. et al. Mutually opposing activity of PIN7 splicing isoforms is required for auxin-mediated tropic responses in Arabidopsis thaliana. N. Phytol. 233, 329–343 (2022).
doi: 10.1111/nph.17792
Wellmer, F., Alves-Ferreira, M., Dubois, A., Riechmann, J. L. & Meyerowitz, E. M. Genome-wide analysis of gene expression during early Arabidopsis flower development. PLoS Genet. 2, e117 (2006).
pubmed: 16789830
pmcid: 1523247
doi: 10.1371/journal.pgen.0020117
Urbanus, S. L. et al. In planta localisation patterns of MADS domain proteins during floral development in Arabidopsis thaliana. BMC Plant Biol. 9, 5 (2009).
pubmed: 19138429
pmcid: 2630930
doi: 10.1186/1471-2229-9-5
Muiño, J. M., Kaufmann, K., van Ham, R. C. H. J., Angenent, G. C. & Krajewski, P. ChIP–seq analysis in R (CSAR): an R package for the statistical detection of protein-bound genomic regions. Plant Methods 7, 11 (2011).
pubmed: 21554688
pmcid: 3114017
doi: 10.1186/1746-4811-7-11
Kaufmann, K. et al. Orchestration of floral initiation by APETALA1. Science 328, 85–89 (2010).
pubmed: 20360106
doi: 10.1126/science.1185244
Gregis, V. et al. Identification of pathways directly regulated by SHORT VEGETATIVE PHASE during vegetative and reproductive development in Arabidopsis. Genome Biol. 14, R56 (2013).
pubmed: 23759218
pmcid: 3706845
doi: 10.1186/gb-2013-14-6-r56
Pajoro, A. et al. Dynamics of chromatin accessibility and gene regulation by MADS-domain transcription factors in flower development. Genome Biol. 15, R41 (2014).
pubmed: 24581456
pmcid: 4054849
doi: 10.1186/gb-2014-15-3-r41
Akiva, S.-K. et al. The flowering hormone florigen accelerates secondary cell wall biogenesis to harmonize vascular maturation with reproductive development. Proc. Natl Acad. Sci. USA 116, 16127–16136 (2019).
doi: 10.1073/pnas.1906405116
van Gelderen, K., van Rongen, M., Liu, A., Otten, A. & Offringa, R. An INDEHISCENT-controlled auxin response specifies the separation layer in early Arabidopsis fruit. Mol. Plant 9, 857–869 (2016).
pubmed: 26995296
doi: 10.1016/j.molp.2016.03.005
Yanofsky, M. F. et al. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346, 35–39 (1990).
pubmed: 1973265
doi: 10.1038/346035a0
Aichinger, E. et al. CHD3 proteins and polycomb group proteins antagonistically determine cell identity in Arabidopsis. PLoS Genet. 5, e1000605 (2009).
pubmed: 19680533
pmcid: 2718830
doi: 10.1371/journal.pgen.1000605
Li, G. et al. ISWI proteins participate in the genome-wide nucleosome distribution in Arabidopsis. Plant J. 78, 706–714 (2014).
pubmed: 24606212
doi: 10.1111/tpj.12499
Yamaguchi, N. et al. Chromatin-mediated feed-forward auxin biosynthesis in floral meristem determinacy. Nat. Commun. 9, 5290 (2018).
pubmed: 30538233
pmcid: 6289996
doi: 10.1038/s41467-018-07763-0
Jolma, A. et al. Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities. Genome Res. 20, 861–873 (2010).
pubmed: 20378718
pmcid: 2877582
doi: 10.1101/gr.100552.109
Bailey, T. L., Johnson, J., Grant, C. E. & Noble, W. S. The MEME Suite. Nuceic Acids Res. https://doi.org/10.1093/nar/gkv416 (2015).
Muiño, J. M., Smaczniak, C., Angenent, G. C., Kaufmann, K. & Van Dijk, A. D. J. Structural determinants of DNA recognition by plant MADS-domain transcription factors. Nucleic Acids Res. 42, 2138–2146 (2014).
pubmed: 24275492
doi: 10.1093/nar/gkt1172
Avila Cobos, F., Alquicira-Hernandez, J., Powell, J. E., Mestdagh, P. & De Preter, K. Benchmarking of cell type deconvolution pipelines for transcriptomics data. Nat. Commun. 11, 5650 (2020).
pubmed: 33159064
pmcid: 7648640
doi: 10.1038/s41467-020-19015-1
Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12, 453–457 (2015).
pubmed: 25822800
pmcid: 4739640
doi: 10.1038/nmeth.3337
Eeckhoute, J., Métivier, R. & Salbert, G. Defining specificity of transcription factor regulatory activities. J. Cell Sci. 122, 4027–4034 (2009).
pubmed: 19910494
doi: 10.1242/jcs.054916
Jana, T., Brodsky, S. & Barkai, N. Speed-specificity trade-offs in the transcription factors search for their genomic binding sites. Trends Genet. 37, 421–432 (2021).
pubmed: 33414013
doi: 10.1016/j.tig.2020.12.001
Immink, R. G. H. et al. SEPALLATA3: the ‘glue’ for MADS box transcription factor complex formation. Genome Biol. 10, R24 (2009).
pubmed: 19243611
pmcid: 2688274
doi: 10.1186/gb-2009-10-2-r24
Gregis, V., Sessa, A., Dorca-Fornell, C. & Kater, M. M. The Arabidopsis floral meristem identity genes AP1, AGL24 and SVP directly repress class B and C floral homeotic genes. Plant J. 60, 626–637 (2009).
pubmed: 19656343
doi: 10.1111/j.1365-313X.2009.03985.x
Alvarez-Buylla, E. R. et al. Flower development. Arab. B. 8, e0127 (2010).
doi: 10.1199/tab.0127
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
pubmed: 24695404
pmcid: 4103590
doi: 10.1093/bioinformatics/btu170
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886
doi: 10.1093/bioinformatics/bts635
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
pubmed: 24227677
doi: 10.1093/bioinformatics/btt656
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281
pmcid: 4302049
doi: 10.1186/s13059-014-0550-8
Van Mourik, H., Muiño, J. M., Pajoro, A., Angenent, G. C. & Kaufmann, K. Characterization of in vivo DNA-binding events of plant transcription factors by ChIP–seq: experimental protocol and computational analysis. Methods Mol. Biol. 1284, 93–121 (2015).
pubmed: 25757769
doi: 10.1007/978-1-4939-2444-8_5
Kaufmann, K. et al. Chromatin immunoprecipitation (ChIP) of plant transcription factors followed by sequencing (ChIP–seq) or hybridization to whole genome arrays (ChIP–ChIP). Nat. Protoc. 5, 457–472 (2010).
pubmed: 20203663
doi: 10.1038/nprot.2009.244
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
pubmed: 19451168
pmcid: 2705234
doi: 10.1093/bioinformatics/btp324
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
pubmed: 20110278
pmcid: 2832824
doi: 10.1093/bioinformatics/btq033
Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).
pubmed: 19029910
doi: 10.1038/nbt.1511
Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805 (2011).
pubmed: 21254760
doi: 10.1021/pr101065j
Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016).
pubmed: 27348712
doi: 10.1038/nmeth.3901
Ge, S. X., Jung, D. & Yao, R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics 36, 2628–2629 (2020).
pubmed: 31882993
doi: 10.1093/bioinformatics/btz931
Li, R. et al. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25, 1966–1967 (2009).
pubmed: 19497933
doi: 10.1093/bioinformatics/btp336
Bolstad, B. M., Irizarry, R. A., Astrand, M. & Speed, T. P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185–193 (2003).
pubmed: 12538238
doi: 10.1093/bioinformatics/19.2.185