Mycobacterial nucleoid-associated protein Lsr2 is required for productive mycobacteriophage infection.


Journal

Nature microbiology
ISSN: 2058-5276
Titre abrégé: Nat Microbiol
Pays: England
ID NLM: 101674869

Informations de publication

Date de publication:
04 2023
Historique:
received: 15 07 2022
accepted: 23 01 2023
medline: 4 4 2023
pubmed: 25 2 2023
entrez: 24 2 2023
Statut: ppublish

Résumé

Mycobacteriophages are a diverse group of viruses infecting Mycobacterium with substantial therapeutic potential. However, as this potential becomes realized, the molecular details of phage infection and mechanisms of resistance remain ill-defined. Here we use live-cell fluorescence microscopy to visualize the spatiotemporal dynamics of mycobacteriophage infection in single cells and populations, showing that infection is dependent on the host nucleoid-associated Lsr2 protein. Mycobacteriophages preferentially adsorb at Mycobacterium smegmatis sites of new cell wall synthesis and following DNA injection, Lsr2 reorganizes away from host replication foci to establish zones of phage DNA replication (ZOPR). Cells lacking Lsr2 proceed through to cell lysis when infected but fail to generate consecutive phage bursts that trigger epidemic spread of phage particles to neighbouring cells. Many mycobacteriophages code for their own Lsr2-related proteins, and although their roles are unknown, they do not rescue the loss of host Lsr2.

Identifiants

pubmed: 36823286
doi: 10.1038/s41564-023-01333-x
pii: 10.1038/s41564-023-01333-x
pmc: PMC10066036
mid: NIHMS1878592
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

695-710

Subventions

Organisme : NIGMS NIH HHS
ID : R35 GM131729
Pays : United States
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : AI51264
Organisme : NIAID NIH HHS
ID : R21 AI156791
Pays : United States
Organisme : Howard Hughes Medical Institute (HHMI)
ID : GT12053
Organisme : NIAID NIH HHS
ID : R01 AI126592
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35 GM133700
Pays : United States
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : AI56772

Informations de copyright

© 2023. The Author(s).

Références

Hendrix, R. W. Bacteriophages: evolution of the majority. Theor. Popul. Biol. 61, 471–480 (2002).
pubmed: 12167366 doi: 10.1006/tpbi.2002.1590
Hendrix, R. W., Smith, M. C., Burns, R. N., Ford, M. E. & Hatfull, G. F. Evolutionary relationships among diverse bacteriophages and prophages: all the world’s a phage. Proc. Natl Acad. Sci. USA 96, 2192–2197 (1999).
pubmed: 10051617 pmcid: 26759 doi: 10.1073/pnas.96.5.2192
Hatfull, G. F. Dark matter of the biosphere: the amazing world of bacteriophage diversity. J. Virol. 89, 8107–8110 (2015).
pubmed: 26018169 pmcid: 4524254 doi: 10.1128/JVI.01340-15
Hendrix, R. W. The long evolutionary reach of viruses. Curr. Biol. 9, 914–917 (1999).
doi: 10.1016/S0960-9822(00)80103-7
Kortright, K. E., Chan, B. K., Koff, J. L. & Turner, P. E. Phage therapy: a renewed approach to combat antibiotic-resistant bacteria. Cell Host Microbe 25, 219–232 (2019).
pubmed: 30763536 doi: 10.1016/j.chom.2019.01.014
Hatfull, G. F., Dedrick, R. M. & Schooley, R. T. Phage therapy for antibiotic-resistant bacterial infections. Annu. Rev. Med. 73, 197–211 (2022).
pubmed: 34428079 doi: 10.1146/annurev-med-080219-122208
Schooley, R. T. et al. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob. Agents Chemother. https://doi.org/10.1128/AAC.00954-17 (2017).
Dedrick, R. et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat. Med. 25, 730–733 (2019).
pubmed: 31068712 pmcid: 6557439 doi: 10.1038/s41591-019-0437-z
Chan, B. K. et al. Phage treatment of an aortic graft infected with Pseudomonas aeruginosa. Evol. Med. Public Health 2018, 60–66 (2018).
pubmed: 29588855 pmcid: 5842392 doi: 10.1093/emph/eoy005
Cano, E. J. et al. Phage therapy for limb-threatening prosthetic knee Klebsiella pneumoniae infection: case report and in vitro characterization of anti-biofilm activity. Clin. Infect. Dis. 73, e144–e151 (2021).
pubmed: 32699879 doi: 10.1093/cid/ciaa705
Labrie, S. J., Samson, J. E. & Moineau, S. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 8, 317–327 (2010).
pubmed: 20348932 doi: 10.1038/nrmicro2315
Hatfull, G. F. Actinobacteriophages: genomics, dynamics and applications. Annu. Rev. Virol. 7, 37–61 (2020).
pubmed: 32991269 pmcid: 8010332 doi: 10.1146/annurev-virology-122019-070009
Bordet, J. in Annales de l’Institut Pasteur. 39, 711–763 (1925).
Bertani, G. Lysogeny. Adv. Virus Res. 5, 151–193 (1958).
Bönicke, R. Lysogeny among mycobacteria. Folia Microbiol. 14, 297–304 (1969).
doi: 10.1007/BF02872695
Snapper, S. B. et al. Lysogeny and transformation in mycobacteria: stable expression of foreign genes. Proc. Natl Acad. Sci. USA 85, 6987–6991 (1988).
pubmed: 2842799 pmcid: 282104 doi: 10.1073/pnas.85.18.6987
Dedrick, R. M. et al. Potent antibody-mediated neutralization limits bacteriophage treatment of a pulmonary Mycobacterium abscessus infection. Nat. Med. 27, 1357–1361 (2021).
pubmed: 34239133 pmcid: 8571776 doi: 10.1038/s41591-021-01403-9
Guerrero-Bustamante, C. A., Dedrick, R. M., Garlena, R. A., Russell, D. A. & Hatfull, G. F. Toward a phage cocktail for tuberculosis: susceptibility and tuberculocidal action of mycobacteriophages against diverse Mycobacterium tuberculosis strains. mBio https://doi.org/10.1128/mBio.00973-21 (2021).
Hatfull, G. F. et al. Comparative genomic analysis of 60 mycobacteriophage genomes: genome clustering, gene acquisition, and gene size. J. Mol. Biol. 397, 119–143 (2010).
pubmed: 20064525 pmcid: 2830324 doi: 10.1016/j.jmb.2010.01.011
Hatfull, G. F. et al. Exploring the mycobacteriophage metaproteome: phage genomics as an educational platform. PLoS Genet. 2, e92 (2006).
pubmed: 16789831 pmcid: 1475703 doi: 10.1371/journal.pgen.0020092
Hatfull, G. F. Mycobacteriophages. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.GPP3-0026-2018 (2018).
Dedrick, R. M. et al. Mycobacterium abscessus strain morphotype determines phage susceptibility, the repertoire of therapeutically useful phages, and phage resistance. mBio https://doi.org/10.1128/mBio.03431-20 (2021).
Chen, J. et al. Defects in glycopeptidolipid biosynthesis confer phage I3 resistance in Mycobacterium smegmatis. Microbiology 155, 4050–4057 (2009).
pubmed: 19744987 doi: 10.1099/mic.0.033209-0
Gordon, B. R., Imperial, R., Wang, L., Navarre, W. W. & Liu, J. Lsr2 of Mycobacterium represents a novel class of H-NS-like proteins. J. Bacteriol. 190, 7052–7059 (2008).
pubmed: 18776007 pmcid: 2580683 doi: 10.1128/JB.00733-08
Gordon, B. R. et al. Structural basis for recognition of AT-rich DNA by unrelated xenogeneic silencing proteins. Proc. Natl Acad. Sci. USA 108, 10690–10695 (2011).
pubmed: 21673140 pmcid: 3127928 doi: 10.1073/pnas.1102544108
Gordon, B. R. et al. Lsr2 is a nucleoid-associated protein that targets AT-rich sequences and virulence genes in Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 107, 5154–5159 (2010).
pubmed: 20133735 pmcid: 2841939 doi: 10.1073/pnas.0913551107
Summers, E. L. et al. The structure of the oligomerization domain of Lsr2 from Mycobacterium tuberculosis reveals a mechanism for chromosome organization and protection. PLoS ONE 7, e38542 (2012).
pubmed: 22719899 pmcid: 3374832 doi: 10.1371/journal.pone.0038542
Chen, J. M. et al. Lsr2 of Mycobacterium tuberculosis is a DNA-bridging protein. Nucleic Acids Res. 36, 2123–2135 (2008).
pubmed: 18187505 pmcid: 2367712 doi: 10.1093/nar/gkm1162
Yang, Y. et al. Defining a temporal order of genetic requirements for development of mycobacterial biofilms. Mol. Microbiol. 105, 794–809 (2017).
pubmed: 28628249 pmcid: 5607029 doi: 10.1111/mmi.13734
Nguyen, K. T., Piastro, K., Gray, T. A. & Derbyshire, K. M. Mycobacterial biofilms facilitate horizontal DNA transfer between strains of Mycobacterium smegmatis. J. Bacteriol. 192, 5134–5142 (2010).
pubmed: 20675473 pmcid: 2944546 doi: 10.1128/JB.00650-10
Baez-Ramirez, E. et al. Elimination of PknL and MSMEG_4242 in Mycobacterium smegmatis alters the character of the outer cell envelope and selects for mutations in Lsr2. Cell Surf. 7, 100060 (2021).
pubmed: 34485766 pmcid: 8408660 doi: 10.1016/j.tcsw.2021.100060
Bartek, I. L. et al. Mycobacterium tuberculosis Lsr2 is a global transcriptional regulator required for adaptation to changing oxygen levels and virulence. MBio 5, e01106–e01114 (2014).
pubmed: 24895305 pmcid: 4049101 doi: 10.1128/mBio.01106-14
Kocincova, D. et al. Spontaneous transposition of IS1096 or ISMsm3 leads to glycopeptidolipid overproduction and affects surface properties in Mycobacterium smegmatis. Tuberculosis (Edinb.) 88, 390–398 (2008).
pubmed: 18439873 doi: 10.1016/j.tube.2008.02.005
Le Moigne, V. et al. Lsr2 is an important determinant of intracellular growth and virulence in Mycobacterium abscessus. Front. Microbiol. 10, 905 (2019).
pubmed: 31114557 pmcid: 6503116 doi: 10.3389/fmicb.2019.00905
Colangeli, R. et al. The multifunctional histone-like protein Lsr2 protects mycobacteria against reactive oxygen intermediates. Proc. Natl Acad. Sci. USA 106, 4414–4418 (2009).
pubmed: 19237572 pmcid: 2657463 doi: 10.1073/pnas.0810126106
Bernheim, A. & Sorek, R. The pan-immune system of bacteria: antiviral defence as a community resource. Nat. Rev. Microbiol. 18, 113–119 (2020).
pubmed: 31695182 doi: 10.1038/s41579-019-0278-2
Jain, P. et al. Specialized transduction designed for precise high-throughput unmarked deletions in Mycobacterium tuberculosis. mBio 5, e01245-14 (2014).
pubmed: 24895308 pmcid: 4049104 doi: 10.1128/mBio.01245-14
Jacobs, W. R. Jr. et al. Rapid assessment of drug susceptibilities of Mycobacterium tuberculosis by means of luciferase reporter phages. Science 260, 819–822 (1993).
pubmed: 8484123 doi: 10.1126/science.8484123
Sassetti, C. M., Boyd, D. H. & Rubin, E. J. Comprehensive identification of conditionally essential genes in mycobacteria. Proc. Natl Acad. Sci. USA 98, 12712–12717 (2001).
pubmed: 11606763 pmcid: 60119 doi: 10.1073/pnas.231275498
Bardarov, S. et al. Conditionally replicating mycobacteriophages: a system for transposon delivery to Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 94, 10961–10966 (1997).
pubmed: 9380742 pmcid: 23545 doi: 10.1073/pnas.94.20.10961
Mediavilla, J. et al. Genome organization and characterization of mycobacteriophage Bxb1. Mol. Microbiol. 38, 955–970 (2000).
pubmed: 11123671 doi: 10.1046/j.1365-2958.2000.02183.x
Sampson, T. et al. Mycobacteriophages BPs, Angel and Halo: comparative genomics reveals a novel class of ultra-small mobile genetic elements. Microbiology (Reading) 155, 2962–2977 (2009).
pubmed: 19556295 pmcid: 2833263 doi: 10.1099/mic.0.030486-0
Oldfield, L. M. & Hatfull, G. F. Mutational analysis of the mycobacteriophage BPs promoter PR reveals context-dependent sequences for mycobacterial gene expression. J. Bacteriol. 196, 3589–3597 (2014).
pubmed: 25092027 pmcid: 4187689 doi: 10.1128/JB.01801-14
Van Valen, D. et al. A single-molecule Hershey-Chase experiment. Curr. Biol. 22, 1339–1343 (2012).
pubmed: 22727695 pmcid: 3462812 doi: 10.1016/j.cub.2012.05.023
Aldridge, B. B. et al. Asymmetry and aging of mycobacterial cells lead to variable growth and antibiotic susceptibility. Science 335, 100–104 (2012).
pubmed: 22174129 doi: 10.1126/science.1216166
Bannon, D. et al. DeepCell Kiosk: scaling deep learning-enabled cellular image analysis with Kubernetes. Nat. Methods 18, 43–45 (2021).
pubmed: 33398191 pmcid: 8759612 doi: 10.1038/s41592-020-01023-0
Jacobs-Sera, D. et al. On the nature of mycobacteriophage diversity and host preference. Virology 434, 187–201 (2012).
pubmed: 23084079 doi: 10.1016/j.virol.2012.09.026
Wetzel, K. S. et al. CRISPY-BRED and CRISPY-BRIP: efficient bacteriophage engineering. Sci. Rep. 11, 6796 (2021).
pubmed: 33762639 pmcid: 7990910 doi: 10.1038/s41598-021-86112-6
Owen, S. V. et al. Prophages encode phage-defense systems with cognate self-immunity. Cell Host Microbe 29, 1620–1633.e8 (2021).
pubmed: 34597593 pmcid: 8585504 doi: 10.1016/j.chom.2021.09.002
Wallden, M., Fange, D., Lundius, E. G., Baltekin, O. & Elf, J. The synchronization of replication and division cycles in individual E. coli cells. Cell 166, 729–739 (2016).
pubmed: 27471967 doi: 10.1016/j.cell.2016.06.052
Zhang, Y. W. et al. HspX promotes the polar localization of mycobacterial protein aggregates. Sci. Rep. 9, 14571 (2019).
pubmed: 31601950 pmcid: 6787098 doi: 10.1038/s41598-019-51132-w
Takeya, K., Koike, M., Mori, R. & Toda, T. Light and electron microscope studies of mycobacterium–mycobacteriophage interactions. III. Further studies on the ultrathin sections. J. Biophys. Biochem. Cytol. 11, 441–447 (1961).
pubmed: 13919270 pmcid: 2225159 doi: 10.1083/jcb.11.2.441
Kolodziej, M. et al. Lsr2, a nucleoid-associated protein influencing mycobacterial cell cycle. Sci. Rep. 11, 2910 (2021).
pubmed: 33536448 pmcid: 7858621 doi: 10.1038/s41598-021-82295-0
Pedulla, M. L. et al. Origins of highly mosaic mycobacteriophage genomes. Cell 113, 171–182 (2003).
pubmed: 12705866 doi: 10.1016/S0092-8674(03)00233-2
Sharma, V., Hardy, A., Luthe, T. & Frunzke, J. Phylogenetic distribution of WhiB- and Lsr2-type regulators in actinobacteriophage genomes. Microbiol. Spectr. 9, e0072721 (2021).
pubmed: 34817283 doi: 10.1128/Spectrum.00727-21
Wetzel, K. S., Aull, H. G., Zack, K. M., Garlena, R. A. & Hatfull, G. F. Protein-mediated and RNA-based origins of replication of extrachromosomal mycobacterial prophages. mBio 11, e00385-20 (2020).
Ko, C. C. & Hatfull, G. F. Mycobacteriophage Fruitloop gp52 inactivates Wag31 (DivIVA) to prevent heterotypic superinfection. Mol. Microbiol. 108, 443–460 (2018).
pubmed: 29488662 pmcid: 5943086 doi: 10.1111/mmi.13946
Ko, C. C. & Hatfull, G. F. Identification of mycobacteriophage toxic genes reveals new features of mycobacterial physiology and morphology. Sci. Rep. 10, 14670 (2020).
pubmed: 32887931 pmcid: 7474061 doi: 10.1038/s41598-020-71588-5
Chaikeeratisak, V. et al. Assembly of a nucleus-like structure during viral replication in bacteria. Science 355, 194–197 (2017).
pubmed: 28082593 pmcid: 6028185 doi: 10.1126/science.aal2130
Marinelli, L. J. et al. BRED: a simple and powerful tool for constructing mutant and recombinant bacteriophage genomes. PLoS ONE 3, e3957 (2008).
pubmed: 19088849 pmcid: 2597740 doi: 10.1371/journal.pone.0003957
Rifat, D., Chen, L., Kreiswirth, B. N. & Nuermberger, E. L. Genome-wide essentiality analysis of Mycobacterium abscessus by saturated transposon mutagenesis and deep sequencing. mBio 12, e0104921 (2021).
pubmed: 34126767 doi: 10.1128/mBio.01049-21
Dedrick, R. M. et al. Phage therapy of Mycobacterium infections: compassionate use of phages in 20 patients with drug-resistant mycobacterial disease. Clin. Infect. Dis. 76, 103–112 (2023).
van Kessel, J. C. & Hatfull, G. F. Mycobacterial recombineering. Methods Mol. Biol. 435, 203–215 (2008).
pubmed: 18370078 doi: 10.1007/978-1-59745-232-8_15
Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 13, e1005595 (2017).
pubmed: 28594827 pmcid: 5481147 doi: 10.1371/journal.pcbi.1005595
Gordon, D. & Green, P. Consed: a graphical editor for next-generation sequencing. Bioinformatics 29, 2936–2937 (2013).
pubmed: 23995391 pmcid: 3810858 doi: 10.1093/bioinformatics/btt515
Russell, D. A. Sequencing, assembling, and finishing complete bacteriophage genomes. Methods Mol. Biol. 1681, 109–125 (2018).
pubmed: 29134591 doi: 10.1007/978-1-4939-7343-9_9
Huson, D. H. SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics 14, 68–73 (1998).
pubmed: 9520503 doi: 10.1093/bioinformatics/14.1.68
Larsson, A. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30, 3276–3278 (2014).
pubmed: 25095880 pmcid: 4221126 doi: 10.1093/bioinformatics/btu531
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
pubmed: 22743772 doi: 10.1038/nmeth.2019
Capek, M., Janacek, J. & Kubinova, L. Methods for compensation of the light attenuation with depth of images captured by a confocal microscope. Microsc. Res. Tech. 69, 624–635 (2006).
pubmed: 16741977 doi: 10.1002/jemt.20330
Thevenaz, P., Ruttimann, U. E. & Unser, M. A pyramid approach to subpixel registration based on intensity. IEEE Trans. Image Process. 7, 27–41 (1998).
pubmed: 18267377 doi: 10.1109/83.650848
Baranowski, C. et al. Maturing Mycobacterium smegmatis peptidoglycan requires non-canonical crosslinks to maintain shape. eLife https://doi.org/10.7554/eLife.37516 (2018).
Pope, W. H. et al. Bacteriophages of Gordonia spp. display a spectrum of diversity and genetic relationships. mBio https://doi.org/10.1128/mBio.01069-17 (2017).
Huson, D. H. & Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267 (2006).
pubmed: 16221896 doi: 10.1093/molbev/msj030

Auteurs

Charles L Dulberger (CL)

Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.

Carlos A Guerrero-Bustamante (CA)

Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA.

Siân V Owen (SV)

Department of Biomedical Informatics and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA.

Sean Wilson (S)

Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.

Michael G Wuo (MG)

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.

Rebecca A Garlena (RA)

Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA.

Lexi A Serpa (LA)

Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA.

Daniel A Russell (DA)

Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA.

Junhao Zhu (J)

Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.

Ben J Braunecker (BJ)

Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.

Georgia R Squyres (GR)

Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.

Michael Baym (M)

Department of Biomedical Informatics and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA.

Laura L Kiessling (LL)

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.

Ethan C Garner (EC)

Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.

Eric J Rubin (EJ)

Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA. erubin@hsph.harvard.edu.

Graham F Hatfull (GF)

Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA. gfh@pitt.edu.

Articles similaires

Genome, Viral Ralstonia Composting Solanum lycopersicum Bacteriophages
Host Specificity Bacteriophages Genomics Algorithms Escherichia coli
Animals Enterococcus faecalis Levodopa Bacteriophages Gastrointestinal Microbiome
Mycobacterium smegmatis Bacterial Proteins CRISPR-Cas Systems Gene Expression Regulation, Bacterial Oxidoreductases

Classifications MeSH