The CRISPR-dCas9 interference system suppresses inhA gene expression in Mycobacterium smegmatis.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
30 10 2024
Historique:
received: 28 06 2024
accepted: 22 10 2024
medline: 31 10 2024
pubmed: 31 10 2024
entrez: 31 10 2024
Statut: epublish

Résumé

CRISPR-dead Cas9 interference (CRISPRi) has become a valuable tool for precise gene regulation. In this study, CRISPRi was designed to target the inhA gene of Mycobacterium smegmatis (Msm), a gene necessary for mycolic acid synthesis. Our findings revealed that sgRNA2 induced with 100 ng/ml aTc achieved over 90% downregulation of inhA gene expression and inhibited bacterial viability by approximately 1,000-fold. Furthermore, CRISPRi enhanced the susceptibility of M. smegmatis to isoniazid and rifampicin, which are both 50% and 90% lower than those of the wild-type strain or other strains, respectively. This study highlights the ability of CRISPRi to silence the inhA gene, which impacts bacterial viability and drug susceptibility. The findings provide valuable insights into the utility of CRISPRi as an alternative tool for gene regulation. CRISPRi might be further assessed for its synergistic effect with current anti-tuberculosis drugs and its possible implications for combating mycobacterial infections, especially drug-resistant tuberculosis.

Identifiants

pubmed: 39478003
doi: 10.1038/s41598-024-77442-2
pii: 10.1038/s41598-024-77442-2
doi:

Substances chimiques

Bacterial Proteins 0
InhA protein, Mycobacterium EC 1.3.1.9
Oxidoreductases EC 1.-
Isoniazid V83O1VOZ8L
Antitubercular Agents 0
Rifampin VJT6J7R4TR

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

26116

Subventions

Organisme : Thailand Science Research and Innovation Fund of Chulalongkorn University
ID : CU_FRB65_hea (81)_176_37_06

Informations de copyright

© 2024. The Author(s).

Références

Hille, F. et al. The Biology of CRISPR-Cas: Backward and forward. Cell 172, 1239–1259 (2018).
doi: 10.1016/j.cell.2017.11.032 pubmed: 29522745
Bhaya, D., Davison, M. & Barrangou, R. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu. Rev. Genet. 45, 273–297 (2011).
doi: 10.1146/annurev-genet-110410-132430 pubmed: 22060043
Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 315, 1709–1712 (2007).
doi: 10.1126/science.1138140 pubmed: 17379808
Jinek, M. et al. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science. 337, 816–821 (2012).
doi: 10.1126/science.1225829 pubmed: 22745249 pmcid: 6286148
Garneau, J. E. et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature. 468, 67–71 (2010).
doi: 10.1038/nature09523 pubmed: 21048762
Wang, H., Russa, L. M. & Qi, L. S. CRISPR/Cas9 in genome editing and beyond. Annu. Rev. Biochem. 85, 227–264 (2016).
doi: 10.1146/annurev-biochem-060815-014607 pubmed: 27145843
Nidhi, S. et al. Novel CRISPR-Cas systems: an updated review of the current achievements, applications, and future research perspectives. Int. J. Mol. Sci. 22, 3327 (2021).
doi: 10.3390/ijms22073327 pubmed: 33805113
Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 152, 1173–1183 (2013).
doi: 10.1016/j.cell.2013.02.022 pubmed: 23452860
Nadolinskaia, N. I. & Goncharenko, A. V. CRISPR interference in regulation of bacterial gene gxpression. Mol. Bio. 56, 823–829 (2022).
doi: 10.1134/S0026893322060139
Wang, K. & Nicholaou, M. Suppression of antimicrobial resistance in MRSA using CRISPR-dCas9. Am. Soc. Clin. Lab. Sci. 30, 207–213 (2017).
doi: 10.29074/ascls.30.4.207
Li, Q. et al. Engineering a CRISPR interference system to repress a class 1 integron in Escherichia coli. Antimicrob. Agents Chemother. 4 https://doi.org/10.1128/AAC.01789-19 (2020).
WHO. Global tuberculosis report 2023. https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2023/ (2024).
Marrakchi, H., Lanéelle, M. A. & Daffé, M. Mycolic acids: structures, biosynthesis, and beyond. Chem. Biol. 21, 67–85 (2014).
doi: 10.1016/j.chembiol.2013.11.011 pubmed: 24374164
Sharma, N. et al. Expression of mycolic acid in response to stress and association with differential clinical manifestations of tuberculosis. Int. J. Mycobact. 8, 237–243 (2019).
doi: 10.4103/ijmy.ijmy_69_19
Sequeira, P. C., Senaratne, R. H. & Riley, L. W. Inhibition of toll-like receptor 2 (TLR-2)-mediated response in human alveolar epithelial cells by mycolic acids and Mycobacterium tuberculosis mce1 operon mutant. Pathogens Disease. 70, 132–140 (2014).
doi: 10.1111/2049-632X.12110 pubmed: 24190334
Rahlwes, K. C., Dias, B. R. S., Campos, P. C., Alvarez-Arguedas, S. & Shiloh, M. U. Pathogenicity and virulence of Mycobacterium tuberculosis. Virulence. 14, 2150449 (2023).
doi: 10.1080/21505594.2022.2150449 pubmed: 36419223
de Souza, M. V. N. et al. Synthesis and biological aspects of mycolic acids: an important target against Mycobacterium tuberculosis. Sci. World J. 8, 756986 (2008).
doi: 10.1100/tsw.2008.99
Vilchèze, C. Mycobacterial cell wall: a source of successful targets for old and new drugs. Appl. Sci. 10, 2278 (2020).
doi: 10.3390/app10072278
Ly, A. & Liu, J. Mycobacterial virulence factors: surface-exposed lipids and secreted proteins. Int. J. Mol. Sci. 21, 3985 (2020).
doi: 10.3390/ijms21113985 pubmed: 32498243
Takayama, K., Wang, C. & Besra, G. S. Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin. Microbiol. Rev. 18, 81–101 (2005).
doi: 10.1128/CMR.18.1.81-101.2005 pubmed: 15653820
de Carvalho L.P.S. gene–drug potency screening in M. Tuberculosis. Nat. Microbiol. 7, 743–744 (2022).
doi: 10.1038/s41564-022-01139-3 pubmed: 35637332
Li, S. et al. CRISPRi chemical genetics and comparative genomics identify genes mediating drug potency in Mycobacterium tuberculosis. Nat. Microbiol. 7, 766–779 (2022).
doi: 10.1038/s41564-022-01130-y pubmed: 35637331
Faulkner, V. et al. Re-sensitization of Mycobacterium smegmatis to rifampicin using CRISPR interference demonstrates its utility for the study of non-essential drug resistance traits. Front. Microbiol. 11 https://doi.org/10.3389/fmicb.2020.619427 (2021).
McNeil, M. B., Keighley, L. M., Cook, J. R., Cheung, C. & Cook, G. M. CRISPR interference identifies vulnerable cellular pathways with bactericidal phenotypes in Mycobacterium tuberculosis. Mol. Microb. 116, 1033–1043 (2021).
doi: 10.1111/mmi.14790
Silveiro, C. et al. CRISPRi-mediated characterization of novel anti-tuberculosis targets: mycobacterial peptidoglycan modifications promote beta-lactam resistance and intracellular survival. Front. Cell. Infect. Microbiol. 13 https://doi.org/10.3389/fcimb.2023.1089911 (2023).
Sparks, I. L., Derbyshire, K. M., Jacobs, W. R. & Morita, Y. S. Mycobacterium smegmatisVanguardnguard of mycobacterial research. J. Bacteriol. 205, e00337–e00322. https://doi.org/10.1128/jb.00337-22 (2023).
doi: 10.1128/jb.00337-22 pubmed: 36598232
Singh, A. K. & Reyrat, J. M. Laboratory maintenance of Mycobacterium smegmatis. Curr. Protoc. Microbiol. Chapter 10, Unit 10C.1. https://doi.org/10.1002/9780471729259.mc10c01s14 (2009).
Palomino, J. C. et al. Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 46, 2720–2722 (2002).
doi: 10.1128/AAC.46.8.2720-2722.2002 pubmed: 12121966
Ghavami, S. & Pandi, A. CRISPR interference and its applications. Prog Mol. Biol. Transl Sci. 180, 123–140 (2021).
doi: 10.1016/bs.pmbts.2021.01.007 pubmed: 33934834
Peddle, C. F., Fry, L. E., McClements, M. E. & MacLaren, R. E. CRISPR interference–potential application in retinal disease. Int. J. Mol. Sci. 21, 2329 (2020).
doi: 10.3390/ijms21072329 pubmed: 32230903 pmcid: 7177328
Yuliani, Y. et al. CRISPR interference-mediated silencing of the mmpL3 gene in Mycobacterium smegmatis and its impact on antimicrobial susceptibility. Antibiotics. 13, 483 (2024).
doi: 10.3390/antibiotics13060483 pubmed: 38927150 pmcid: 11200583
Choudhary, E., Sharma, R., Kumar, Y. & Agarwal, N. Conditional silencing by CRISPRi reveals the role of DNA gyrase in formation of drug-tolerant persister population in Mycobacterium tuberculosis. Front. Cell. Infect. Microbiol. 9 https://doi.org/10.3389/fcimb.2019.00070 (2019).
Zhang, X. H., Tee, L. Y., Wang, X. G., Huang, Q. S. & Yang, S. H. Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol. Ther. Nucleic Acids. 4, e264. https://doi.org/10.1038/mtna.2015.37 (2015).
doi: 10.1038/mtna.2015.37 pubmed: 26575098 pmcid: 4877446
Concordet, J. P. & Haeussler, M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 46, W242–W245. https://doi.org/10.1093/nar/gky354 (2018).
doi: 10.1093/nar/gky354 pubmed: 29762716
Williams, J. T. & Abramovitch, R. B. Molecular mechanisms of MmpL3 function and inhibition. Microb. Drug Resist. 29, 190–212 (2023).
doi: 10.1089/mdr.2021.0424 pubmed: 36809064
Wong, A. I. & Rock, J. M. in In Mycobacteria Protocols. 343–364 (eds Tanya, P. & Anuradha, K.) (Springer US, 2021).
doi: 10.1007/978-1-0716-1460-0_16
Rodríguez-García, A., Combes, P., Pérez-Redondo, R., Smith, M. C. A. & Smith, M. C. M. Natural and synthetic tetracycline-inducible promoters for use in the antibiotic-producing bacteria Streptomyces. Nucleic Acids Res. 33, e87–e87. https://doi.org/10.1093/nar/gni086 (2005).
doi: 10.1093/nar/gni086 pubmed: 15917435
Evans, J. C. & Mizrahi, V. The application of tetracycline regulated gene expression systems in the validation of novel drug targets in Mycobacterium tuberculosis. Front. Microbiol. 6, 812 (2015).
doi: 10.3389/fmicb.2015.00812 pubmed: 26300875
Cui, L. et al. A CRISPRi screen in E. Coli reveals sequence-specific toxicity of dCas9. Nat. Commun. 9, 1912 (2018).
doi: 10.1038/s41467-018-04209-5 pubmed: 29765036
Rishi, H. S. et al. Systematic genome-wide querying of coding and non-coding functional elements in E. coli using CRISPRi. Preprint at https://www.biorxiv.org/content/ (2020). https://doi.org/10.1101/2020.03.04.975888v1
Guzzo, M., Castro, L. K., Reisch, C. R., Guo, M. S. & Laub, M. T. A CRISPR interference system for efficient and rapid gene knockdown in Caulobacter crescentus. mBio. 11; (2020). https://doi.org/10.1128/mbio.02415-19
Peters, J. M. et al. A comprehensive, CRISPR-based functional analysis of essential genes in bacteria. Cell 165, 1493–1506 (2016).
doi: 10.1016/j.cell.2016.05.003 pubmed: 27238023 pmcid: 4894308
Gilbert, L. A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell. 159, 647–661 (2014).
doi: 10.1016/j.cell.2014.09.029 pubmed: 25307932
Rock, J. M. et al. Programmable transcriptional repression in mycobacteria using an orthogonal CRISPR interference platform. Nat. Microbiol. 2, 16274 (2017).
doi: 10.1038/nmicrobiol.2016.274 pubmed: 28165460
Liu, X. et al. High-throughput CRISPRi phenotyping identifies new essential genes in Streptococcus pneumoniae. Mol. Syst. Biol. 13, 931 (2017).
doi: 10.15252/msb.20167449 pubmed: 28490437
Nguyen, T. Q. et al. CRISPR interference-based inhibition of MAB_0055c expression alters drug sensitivity in Mycobacterium abscessus. Microbiol. Spectr. 11 https://doi.org/10.1128/spectrum.00631-23 (2023).
Kurepina, N. et al. CRISPR inhibition of essential peptidoglycan biosynthesis genes in Mycobacterium abscessus and its impact on β-lactam susceptibility. Antimicrob. Agents Chemother. 66 https://doi.org/10.1128/aac.00093-22 (2022).
Singh, A. K. et al. Investigating essential gene function in Mycobacterium tuberculosis using an efficient CRISPR interference system. Nucleic Acids Res. 44 https://doi.org/10.1093/nar/gkw625 (2016).
Vilchèze, C. et al. Inactivation of the inha-encoded fatty acid synthase II (FASII) enoyl-acyl carrier protein reductase induces accumulation of the FASI end products and cell lysis of Mycobacterium smegmatis. J. Bacteriol. 182, 4059–4067 (2000).
doi: 10.1128/JB.182.14.4059-4067.2000 pubmed: 10869086
Daffé, M., Quémard, A. & Marrakchi, H. Biogenesis of Fatty Acids, Lipids and Membranes (edGeiger, O.) 1–36 (Springer International Publishing, 2017).
doi: 10.1007/978-3-319-43676-0_18-1
Unissa, A. N., Subbian, S., Hanna, L. E. & Selvakumar, N. Overview on mechanisms of isoniazid action and resistance in Mycobacterium tuberculosis. Infect. Genet. Evol. 45, 474–492 (2016).
doi: 10.1016/j.meegid.2016.09.004 pubmed: 27612406
Bhatt, A., Kremer, L., Dai, A. Z., Sacchettini, J. C. & Jacobs, W. R. Jr. Conditional depletion of KasA, a key enzyme of mycolic acid biosynthesis, leads to mycobacterial cell lysis. J. Bacteriol. 187, 7596–7606 (2005).
doi: 10.1128/JB.187.22.7596-7606.2005 pubmed: 16267284
Kim, S. et al. In vitro effect of DFC-2 on mycolic acid biosynthesis in Mycobacterium tuberculosis. J. Microbiol. Biotechnol. 27, 1932–1941 (2017).
doi: 10.4014/jmb.1705.05013 pubmed: 28870005
Samukawa, N. et al. An efficient CRISPR interference-based prediction method for synergistic/additive effects of novel combinations of anti-tuberculosis drugs. Microbiology 168 https://doi.org/10.1099/mic.0.001285 (2022).
de Wet, T. J., Winkler, K. R., Mhlanga, M., Mizrahi, V. & Warner, D. F. Arrayed CRISPRi and quantitative imaging describe the morphotypic landscape of essential mycobacterial genes. Elife 9, https://doi.org/10.7554/eLife.60083 (2020).
Zambrano, M. M. & Kolter, R. Mycobacterial biofilms: a greasy way to hold it together. Cell 123, 762–764 (2005).
doi: 10.1016/j.cell.2005.11.011 pubmed: 16325571
Ojha, A. K. et al. Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Mol. Microbiol. 69, 164–174 (2008).
doi: 10.1111/j.1365-2958.2008.06274.x pubmed: 18466296
Addgene Sequence Analyzer: PLJR962 sequencing result: primers. https://www.addgene.org/browse/sequence/222096/  (2017).

Auteurs

Nuntita Singpanomchai (N)

Inter-Department Program of Biomedical Sciences, Faculty of Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand.

Panan Ratthawongjirakul (P)

Center of Excellence for Innovative Diagnosis of Antimicrobial Resistance, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand. panan_etc@yahoo.com.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Vancomycin Polyesters Anti-Bacterial Agents Models, Theoretical Drug Liberation
Biofilms Candida albicans Quorum Sensing Candida glabrata Menthol
Prader-Willi Syndrome Humans Angelman Syndrome CRISPR-Cas Systems Human Embryonic Stem Cells

Classifications MeSH