Selective Serotonin Reuptake Inhibitors within Cells: Temporal Resolution in Cytoplasm, Endoplasmic Reticulum, and Membrane.
biosensor
escitalopram
fluoxetine
iDrugSnFRs
inside-out pharmacology
pharmacokinetics
Journal
The Journal of neuroscience : the official journal of the Society for Neuroscience
ISSN: 1529-2401
Titre abrégé: J Neurosci
Pays: United States
ID NLM: 8102140
Informations de publication
Date de publication:
29 03 2023
29 03 2023
Historique:
received:
29
07
2022
revised:
02
11
2022
accepted:
27
11
2022
medline:
31
3
2023
pubmed:
4
3
2023
entrez:
3
3
2023
Statut:
ppublish
Résumé
Selective serotonin reuptake inhibitors (SSRIs) are the most prescribed treatment for individuals experiencing major depressive disorder. The therapeutic mechanisms that take place before, during, or after SSRIs bind the serotonin transporter (SERT) are poorly understood, partially because no studies exist on the cellular and subcellular pharmacokinetic properties of SSRIs in living cells. We studied escitalopram and fluoxetine using new intensity-based, drug-sensing fluorescent reporters targeted to the plasma membrane, cytoplasm, or endoplasmic reticulum (ER) of cultured neurons and mammalian cell lines. We also used chemical detection of drug within cells and phospholipid membranes. The drugs attain equilibrium in neuronal cytoplasm and ER at approximately the same concentration as the externally applied solution, with time constants of a few s (escitalopram) or 200-300 s (fluoxetine). Simultaneously, the drugs accumulate within lipid membranes by ≥18-fold (escitalopram) or 180-fold (fluoxetine), and possibly by much larger factors. Both drugs leave cytoplasm, lumen, and membranes just as quickly during washout. We synthesized membrane-impermeant quaternary amine derivatives of the two SSRIs. The quaternary derivatives are substantially excluded from membrane, cytoplasm, and ER for >2.4 h. They inhibit SERT transport-associated currents sixfold or 11-fold less potently than the SSRIs (escitalopram or fluoxetine derivative, respectively), providing useful probes for distinguishing compartmentalized SSRI effects. Although our measurements are orders of magnitude faster than the therapeutic lag of SSRIs, these data suggest that SSRI-SERT interactions within organelles or membranes may play roles during either the therapeutic effects or the antidepressant discontinuation syndrome.
Identifiants
pubmed: 36868853
pii: JNEUROSCI.1519-22.2022
doi: 10.1523/JNEUROSCI.1519-22.2022
pmc: PMC10072302
doi:
Substances chimiques
Selective Serotonin Reuptake Inhibitors
0
Fluoxetine
01K63SUP8D
Escitalopram
4O4S742ANY
Serotonin
333DO1RDJY
Serotonin Plasma Membrane Transport Proteins
0
Citalopram
0DHU5B8D6V
Banques de données
PDB
['2ONK', '4TQU', '2R6G', '6CVL', '4FI3', '5B58']
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
2222-2241Subventions
Organisme : NIGMS NIH HHS
ID : T32 GM007616
Pays : United States
Organisme : NINDS NIH HHS
ID : T32 NS105595
Pays : United States
Organisme : NIMH NIH HHS
ID : R21 MH120823
Pays : United States
Organisme : Howard Hughes Medical Institute
Pays : United States
Organisme : NIDA NIH HHS
ID : R21 DA049140
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM123582
Pays : United States
Informations de copyright
Copyright © 2023 the authors.
Références
J Gen Physiol. 2016 Jan;147(1):63-76
pubmed: 26712850
F1000 Biol Rep. 2009 Mar 24;1:23
pubmed: 20948663
J Neurosci. 2004 Jun 9;24(23):5420-6
pubmed: 15190115
Neuropsychopharmacology. 2013 Oct;38(11):2209-19
pubmed: 23670590
Eur Biophys J. 2008 Oct;37(8):1317-28
pubmed: 18504571
Mol Pharm. 2018 Jun 4;15(6):2224-2233
pubmed: 29709195
AAPS J. 2009 Mar;11(1):167-77
pubmed: 19280351
Proc Natl Acad Sci U S A. 2004 May 25;101(21):8186-91
pubmed: 15148402
Bio Protoc. 2022 Nov 20;12(22):
pubmed: 36532688
Lancet. 2018 Nov 24;392(10161):2299-2312
pubmed: 30396512
Am J Psychiatry. 2015 Nov 1;172(11):1064-6
pubmed: 26183700
Nat Struct Mol Biol. 2018 Feb;25(2):170-175
pubmed: 29379174
Biopharm Drug Dispos. 2007 Oct;28(7):349-60
pubmed: 17654695
J Neurosci. 2001 Nov 1;21(21):8378-86
pubmed: 11606626
J Biol Chem. 2016 Sep 16;291(38):19725-19733
pubmed: 27432886
Nat Methods. 2013 Feb;10(2):162-70
pubmed: 23314171
J Clin Psychiatry. 2002 Apr;63(4):331-6
pubmed: 12000207
Nat Protoc. 2019 Aug;14(8):2597
pubmed: 31312046
Pharm Res. 2019 Nov 7;36(12):178
pubmed: 31701258
Am J Psychiatry. 1992 Nov;149(11):1592-4
pubmed: 1415832
J Clin Psychiatry. 2000 Oct;61(10):722-8
pubmed: 11078032
Arch Neurol. 1990 Sep;47(9):977-80
pubmed: 2144417
World J Clin Oncol. 2015 Dec 10;6(6):299-311
pubmed: 26677444
N Engl J Med. 2008 Jan 3;358(1):55-68
pubmed: 18172175
Pharmaceuticals (Basel). 2021 Sep 02;14(9):
pubmed: 34577594
Mol Pharmacol. 2021 Aug;100(2):66-81
pubmed: 34011569
J Am Chem Soc. 2022 May 18;144(19):8480-8486
pubmed: 35446570
Prog Lipid Res. 2011 Oct;50(4):357-71
pubmed: 21741992
Cell. 2020 Dec 23;183(7):1986-2002.e26
pubmed: 33333022
J Clin Pharmacol. 2005 Dec;45(12):1400-6
pubmed: 16291715
Life Sci. 1980 May 26;26(21):1827-31
pubmed: 7392816
Biophys Chem. 2005 Oct 22;118(1):15-21
pubmed: 15994001
J Physiol. 1979 Sep;294:365-86
pubmed: 229214
Hosp Med. 2002 Nov;63(11):668-71
pubmed: 12474611
Nat Rev Drug Discov. 2005 Sep;4(9):764-74
pubmed: 16121130
J Med Chem. 2014 Apr 10;57(7):3005-10
pubmed: 24601604
Cell. 2021 Mar 4;184(5):1299-1313.e19
pubmed: 33606976
Neuropsychopharmacology. 2000 Oct;23(4):428-38
pubmed: 10989270
Mol Pharm. 2013 Jun 3;10(6):2467-78
pubmed: 23631740
Nat Struct Mol Biol. 2010 Nov;17(11):1367-76
pubmed: 20972448
Biochem Pharmacol. 2010 Nov 15;80(10):1546-52
pubmed: 20696140
J Neurosci. 1997 Apr 1;17(7):2257-66
pubmed: 9065487
Int J Neuropsychopharmacol. 2009 Aug;12(7):905-15
pubmed: 19236729
J Neurosci. 2009 Jul 29;29(30):9635-43
pubmed: 19641126
Int Clin Psychopharmacol. 2016 May;31(3):119-26
pubmed: 26650488
J Gen Physiol. 1977 Apr;69(4):497-515
pubmed: 300786
Front Cell Neurosci. 2019 Nov 12;13:499
pubmed: 31798415
PLoS One. 2009 Jul 30;4(7):e6441
pubmed: 19649325
Sci Rep. 2017 Feb 22;7:43047
pubmed: 28225057
Proc Natl Acad Sci U S A. 2015 Aug 11;112(32):E4485-94
pubmed: 26216995
Proc Natl Acad Sci U S A. 2018 Nov 6;115(45):E10596-E10604
pubmed: 30352853
Life Sci. 1974 Aug 1;15(3):471-9
pubmed: 4549929
Nature. 2016 Apr 21;532(7599):334-9
pubmed: 27049939
Ther Adv Psychopharmacol. 2018 Jan;8(1):49-58
pubmed: 29344343
J Pharmacol Toxicol Methods. 2007 Mar-Apr;55(2):214-23
pubmed: 16990018
J Gen Physiol. 2019 Mar 4;151(3):342-356
pubmed: 30796095
Am J Psychiatry. 2000 Sep;157(9):1423-8
pubmed: 10964858
Front Pharmacol. 2013 Aug 08;4:98
pubmed: 23964240
Elife. 2022 Jan 04;11:
pubmed: 34982029
ACS Synth Biol. 2013 Feb 15;2(2):83-92
pubmed: 23656371
Life Sci. 1995;57(5):411-41
pubmed: 7623609
Int Clin Psychopharmacol. 2003 Jul;18(4):211-7
pubmed: 12817155
Clin Pharmacokinet. 2007;46(4):281-90
pubmed: 17375980
Biol Psychiatry. 2012 Dec 1;72(11):907-15
pubmed: 22771239
Curr Med Res Opin. 2009 Jan;25(1):161-75
pubmed: 19210149
Psychiatry Res. 1992 Aug;45(2):95-104
pubmed: 1362616
Fluids Barriers CNS. 2013 Jan 21;10(1):6
pubmed: 23336814
J Pharm Sci. 2011 Jun;100(6):2147-60
pubmed: 21271563
FEBS Lett. 2016 Dec;590(23):4393-4401
pubmed: 27714801
Life Sci. 1996;58(22):1995-2002
pubmed: 8637429
Neuron. 1994 Apr;12(4):845-59
pubmed: 8161456
BMJ Case Rep. 2018 Oct 8;2018:
pubmed: 30301727
Depress Anxiety. 2012 Jun;29(6):531-40
pubmed: 22565858
Biol Psychiatry. 1997 Jan 1;41(1):58-64
pubmed: 8988796
Neuron. 2012 Jun 7;74(5):830-44
pubmed: 22681688
J Med Chem. 2007 Sep 20;50(19):4606-15
pubmed: 17725338
J Gen Physiol. 2019 Jun 3;151(6):738-757
pubmed: 30718376
Nat Methods. 2009 May;6(5):343-5
pubmed: 19363495
J Gen Physiol. 2011 Jan;137(1):59-79
pubmed: 21187334
Elife. 2017 Jul 18;6:
pubmed: 28718768
Indian J Psychiatry. 2004 Oct;46(4):333-41
pubmed: 21206792
Psychother Psychosom. 2015 Feb 21;84(2):72-81
pubmed: 25721705
J Gen Physiol. 1977 Apr;69(4):475-96
pubmed: 16078