The Severity of Congenital Hypothyroidism With Gland-In-Situ Predicts Molecular Yield by Targeted Next-Generation Sequencing.
congenital hypothyroidism
gland-in-situ
molecular yield
next-generation sequencing
severity
Journal
The Journal of clinical endocrinology and metabolism
ISSN: 1945-7197
Titre abrégé: J Clin Endocrinol Metab
Pays: United States
ID NLM: 0375362
Informations de publication
Date de publication:
18 08 2023
18 08 2023
Historique:
received:
12
04
2022
medline:
21
8
2023
pubmed:
9
3
2023
entrez:
8
3
2023
Statut:
ppublish
Résumé
Congenital hypothyroidism with gland-in-situ (CH-GIS) is usually attributed to mutations in the genes involved in thyroid hormone production. The diagnostic yield of targeted next-generation sequencing (NGS) varied widely between studies. We hypothesized that the molecular yield of targeted NGS would depend on the severity of CH. Targeted NGS was performed in 103 CH-GIS patients from the French national screening program referred to the Reference Center for Rare Thyroid Diseases of Angers University Hospital. The custom targeted NGS panel contained 48 genes. Cases were classified as solved or probably solved depending on the known inheritance of the gene, the classification of the variants according to the American College of Medical Genetics and Genomics, the familial segregation, and published functional studies. Thyroid-stimulating hormone at CH screening and at diagnosis (TSHsc and TSHdg) and free T4 at diagnosis (FT4dg) were recorded. NGS identified 95 variants in 10 genes in 73 of the 103 patients, resulting in 25 solved cases and 18 probably solved cases. They were mainly due to mutations in the TG (n = 20) and TPO (n = 15) genes. The molecular yield was, respectively, 73% and 25% if TSHsc was ≥ and < 80 mUI/L, 60% and 30% if TSHdg was ≥ and < 100 mUI/L, and 69% and 29% if FT4dg was ≤ and > 5 pmol/L. NGS in patients with CH-GIS in France found a molecular explanation in 42% of the cases, increasing to 70% when TSHsc was ≥ 80 mUI/L or FT4dg was ≤ 5 pmol/L.
Identifiants
pubmed: 36884306
pii: 7072709
doi: 10.1210/clinem/dgad119
pmc: PMC10438870
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e779-e788Informations de copyright
© The Author(s) 2023. Published by Oxford University Press on behalf of the Endocrine Society.
Références
J Clin Endocrinol Metab. 2011 Aug;96(8):2422-9
pubmed: 21632812
Mol Cell Endocrinol. 2014 Jan 25;382(1):424-451
pubmed: 24001578
Mol Med Rep. 2020 Jul;22(1):297-309
pubmed: 32319661
Front Endocrinol (Lausanne). 2021 Jun 24;12:657913
pubmed: 34248839
Eur J Endocrinol. 2018 Jun;178(6):623-633
pubmed: 29650690
Eur J Endocrinol. 2005 Feb;152(2):193-8
pubmed: 15745925
Thyroid. 2021 Mar;31(3):387-419
pubmed: 33272083
Ann Lab Med. 2016 Mar;36(2):145-53
pubmed: 26709262
Ann Clin Lab Sci. 2021 Jan;51(1):73-81
pubmed: 33653783
J Pediatr Endocrinol Metab. 2016 Jul 1;29(7):807-12
pubmed: 27166716
Eur J Endocrinol. 2018 Sep 24;179(6):R297-R317
pubmed: 30324792
J Clin Endocrinol Metab. 2020 May 1;105(5):
pubmed: 31867598
Endocrinology. 2021 Aug 1;162(8):
pubmed: 33631011
Exp Clin Endocrinol Diabetes. 1996;104 Suppl 4:117-20
pubmed: 8981017
Genome Res. 2010 Jan;20(1):110-21
pubmed: 19858363
Thyroid. 2015 Mar;25(3):292-9
pubmed: 25557138
Eur J Endocrinol. 2014 Oct;171(4):499-507
pubmed: 25214233
Front Endocrinol (Lausanne). 2021 Feb 22;11:545339
pubmed: 33692749
Clin Endocrinol (Oxf). 2014 Sep;81(3):452-7
pubmed: 24735383
EMBO Mol Med. 2018 Dec;10(12):
pubmed: 30446499
PLoS One. 2015 Dec 01;10(12):e0142615
pubmed: 26623656
PLoS One. 2018 Sep 21;13(9):e0204323
pubmed: 30240412
Nature. 2020 May;581(7809):434-443
pubmed: 32461654
Front Endocrinol (Lausanne). 2020 Apr 21;11:237
pubmed: 32425884
Front Endocrinol (Lausanne). 2019 Aug 02;10:526
pubmed: 31428054
J Clin Endocrinol Metab. 2014 Mar;99(3):E544-53
pubmed: 24423310
J Clin Endocrinol Metab. 2016 Dec;101(12):4521-4531
pubmed: 27525530
Hum Mol Genet. 2009 Jun 15;18(12):2266-76
pubmed: 19336474
Nature. 2021 Aug;596(7873):583-589
pubmed: 34265844
Clin Chim Acta. 2021 Jul;518:162-169
pubmed: 33773966
Nucleic Acids Res. 2022 Jan 7;50(D1):D439-D444
pubmed: 34791371
Clin Chim Acta. 2017 May;468:76-80
pubmed: 28215547
J Clin Endocrinol Metab. 2018 May 1;103(5):1889-1898
pubmed: 29546359
Hum Mol Genet. 2017 Jul 1;26(13):2507-2514
pubmed: 28444304
Eur J Endocrinol. 2016 Jul;175(1):73-84
pubmed: 27129361
Endocr Dev. 2014;26:60-78
pubmed: 25231445
Genet Med. 2015 May;17(5):405-24
pubmed: 25741868
Ann Epidemiol. 2016 Feb;26(2):100-105.e4
pubmed: 26775052
Horm Res Paediatr. 2014;82(4):252-60
pubmed: 25248169
Horm Res Paediatr. 2014;81(2):80-103
pubmed: 24662106
Mol Cell Endocrinol. 2016 Mar 5;423:60-6
pubmed: 26777470
Mol Cell Endocrinol. 2020 Feb 5;501:110638
pubmed: 31751626
Front Endocrinol (Lausanne). 2020 Jul 14;11:413
pubmed: 32765423
Thyroid. 2007 Nov;17(11):1049-54
pubmed: 17949265
J Clin Endocrinol Metab. 2011 Nov;96(11):E1838-42
pubmed: 21900383
Commun Biol. 2019 Jul 24;2:270
pubmed: 31372509
Nature. 2020 Feb;578(7796):627-630
pubmed: 32025030
Thyroid. 2016 Sep;26(9):1215-24
pubmed: 27373559
J Pediatr Endocrinol Metab. 2019 Nov 26;32(11):1265-1273
pubmed: 31430255
JCI Insight. 2018 Oct 18;3(20):
pubmed: 30333321