Heterologous expression of Chlorophytum borivilianum Squalene epoxidase in tobacco modulates stigmasterol production and alters vegetative and reproductive growth.


Journal

Plant cell reports
ISSN: 1432-203X
Titre abrégé: Plant Cell Rep
Pays: Germany
ID NLM: 9880970

Informations de publication

Date de publication:
May 2023
Historique:
received: 25 09 2022
accepted: 27 02 2023
medline: 8 5 2023
pubmed: 10 3 2023
entrez: 9 3 2023
Statut: ppublish

Résumé

CbSE overexpression increased stigmasterol levels and altered plant morphology. The genes upstream and downstream of CbSE were found to be upregulated, which confirms its regulatory role in the saponin biosynthetic pathway. Chlorophytum borivilianum is a high-value medicinal plant with many promising preclinical applications that include saponins as a major active ingredient. Squalene epoxidase (SE) is one of the major rate-limiting enzymes of the saponin biosynthetic pathway. Here, we functionally characterized C. borivilianum SE (CbSE) by over-expressing heterologously in Nicotiana tabacum. The heterologous expression of CbSE resulted in stunted pant growth with altered leaf and flower morphology. Next, RT-qPCR analysis of transgenic plants overexpressing CbSE revealed increased expression levels of Cycloartenol synthase (CAS), Beta amyrin synthase (βAS), and cytochrome P450 monooxygenase 51 (CYP51) (Cytochrome P450), which encode key enzymes for triterpenoid and phytosterol biosynthesis in C. borivilianum. Further, Methyl Jasmonate (MeJa) treatment upregulated Squalene synthase (SQS), SE, and Oxidosqualene cyclases (OSCs) to a significant level. GC-MS analysis of the leaf and hairy roots of the transformants showed an increased stigmasterol content (0.5-1.0 fold) compared to wild type (WT) plants. These results indicate that CbSE is a rate-limiting gene, which encodes an efficient enzyme responsible for phytosterol and triterpenoid production in C. borivilianum.

Identifiants

pubmed: 36894686
doi: 10.1007/s00299-023-03000-1
pii: 10.1007/s00299-023-03000-1
doi:

Substances chimiques

Stigmasterol 99WUK5D0Y8
Squalene Monooxygenase EC 1.14.14.17
Saponins 0
Phytosterols 0
Triterpenes 0
Cytochrome P-450 Enzyme System 9035-51-2

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

909-919

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Aboobucker SI, Suza WP (2019) Why do plants convert sitosterol to stigmasterol? Front Plant Sci 10:354
pubmed: 30984220 pmcid: 6447690 doi: 10.3389/fpls.2019.00354
Bach TJ (2016) Secondary metabolism: high cholesterol in tomato. Nat Plants 3:1–2
doi: 10.1038/nplants.2016.213
Bhat WW, Lattoo SK, Razdan S et al (2012) Molecular cloning, bacterial expression and promoter analysis of squalene synthase from Withania somnifera (L.) Dunal. Gene 499:25–36
pubmed: 22425978 doi: 10.1016/j.gene.2012.03.004
Bonhomme V, Laurain-Mattar D, Fliniaux MA (2000) Effects of the rol C gene on hairy root: induction development and tropane alkaloid production by Atropa belladonna. J Nat Prod 63:1249–1252
pubmed: 11000029 doi: 10.1021/np990614l
Bordia PC, Joshi A, Simlot MM (1995) Safed musli In: K.L. Chadha and R. Gupta ed. Advances in Horticulture Vol. 11 - Medicinal and Aromatic Plants. (Malhotra Publishing House, New Delhi) pp- 429–449
Burger C, Rondet S, Benveniste P, Schaller H (2003) Virus-induced silencing of sterol biosynthetic genes: identification of a Nicotiana tabacum L. obtusifoliol-14α-demethylase (CYP51) by genetic manipulation of the sterol biosynthetic pathway in Nicotiana benthamiana L. J Exp Bot 54:1675–1683
pubmed: 12810855 doi: 10.1093/jxb/erg184
Busquets A, Keim V, Closa M et al (2008) Arabidopsis thaliana contains a single gene encoding squalene synthase. Plant Mol Biol 67:25–36
pubmed: 18236008 doi: 10.1007/s11103-008-9299-3
Chang YS, Seo E-K, Gyllenhaal C, Block KI (2003) Panax ginseng: a role in cancer therapy? Integr Cancer Ther 2:13–33
pubmed: 12941165 doi: 10.1177/1534735403251167
Dhar N, Razdan S, Rana S et al (2015) A decade of molecular understanding of withanolide biosynthesis and in vitro studies in Withania somnifera (L.) Dunal: prospects and perspectives for pathway engineering. Front Plant Sci 6:1031
pubmed: 26640469 pmcid: 4661287 doi: 10.3389/fpls.2015.01031
Gas-Pascual E, Berna A, Bach TJ, Schaller H (2014) Plant oxidosqualene metabolism: cycloartenol synthase–dependent sterol biosynthesis in Nicotiana benthamiana. PLoS ONE 9:e109156
pubmed: 25343375 pmcid: 4208727 doi: 10.1371/journal.pone.0109156
Geisler K, Hughes RK, Sainsbury F et al (2013) Biochemical analysis of a multifunctional cytochrome P450 (CYP51) enzyme required for synthesis of antimicrobial triterpenes in plants. Proc Natl Acad Sci 110:E3360–E3367
pubmed: 23940321 pmcid: 3761579 doi: 10.1073/pnas.1309157110
Ghawana S, Paul A, Kumar H et al (2011) An RNA isolation system for plant tissues rich in secondary metabolites. BMC Res Notes 4:85
pubmed: 21443767 pmcid: 3079660 doi: 10.1186/1756-0500-4-85
Guo H, Li R, Liu S et al (2016) Molecular characterization, expression, and regulation of Gynostemma pentaphyllum squalene epoxidase gene 1. Plant Physiol Biochem 109:230–239
pubmed: 27744265 doi: 10.1016/j.plaphy.2016.10.002
Gwak YS, Han JY, Adhikari PB et al (2017) Heterologous production of a ginsenoside saponin (compound K) and its precursors in transgenic tobacco impairs the vegetative and reproductive growth. Planta 245:1105–1119
pubmed: 28243734 doi: 10.1007/s00425-017-2668-x
Han J-Y, In J-G, Kwon Y-S, Choi Y-E (2010) Regulation of ginsenoside and phytosterol biosynthesis by RNA interferences of squalene epoxidase gene in Panax ginseng. Phytochemistry 71:36–46
pubmed: 19857882 doi: 10.1016/j.phytochem.2009.09.031
Han J-Y, Wang H-Y, Choi Y-E (2014) Production of dammarenediol-II triterpene in a cell suspension culture of transgenic tobacco. Plant Cell Rep 33:225–233
pubmed: 24141692 doi: 10.1007/s00299-013-1523-1
Han JY, Jo H-J, Choi YE (2020) Overexpression of the squalene epoxidase gene (PgSE1) resulted in enhanced production of ginsenosides and phytosterols in transgenic ginseng. Plant Biotechnol Rep 14:673–682
doi: 10.1007/s11816-020-00643-4
Harker M, Hellyer A, Clayton JC et al (2003) Co-ordinate regulation of sterol biosynthesis enzyme activity during accumulation of sterols in developing rape and tobacco seed. Planta 216:707–715
pubmed: 12569414 doi: 10.1007/s00425-002-0913-3
Hayashi H, Huang P, Inoue K (2003) Up-regulation of soyasaponin biosynthesis by methyl jasmonate in cultured cells of Glycyrrhiza glabra. Plant Cell Physiol 44:404–411
pubmed: 12721381 doi: 10.1093/pcp/pcg054
Hayward A, Padmanabhan M, Dinesh-Kumar SP (2011) Virus-induced gene silencing in nicotiana benthamiana and other plant species. Methods Mol Biol 678:55–63
Hong S, Peebles CAM, Shanks JV et al (2006) Terpenoid indole alkaloid production by Catharanthus roseus hairy roots induced by Agrobacterium tumefaciens harboring rol ABC genes. Biotechnol Bioeng 93:386–390
pubmed: 16261632 doi: 10.1002/bit.20699
Jo H-J, Han JY, Hwang H-S, Choi YE (2017) β-Amyrin synthase (EsBAS) and β-amyrin 28-oxidase (CYP716A244) in oleanane-type triterpene saponin biosynthesis in Eleutherococcus senticosus. Phytochemistry 135:53–63
pubmed: 28012567 doi: 10.1016/j.phytochem.2016.12.011
Kalra S, Kumar S, Lakhanpal N et al (2013a) Characterization of squalene synthase gene from Chlorophytum borivilianum (Sant. and Fernand.). Mol Biotechnol 54:944–953
pubmed: 23338982 doi: 10.1007/s12033-012-9645-1
Kalra S, Puniya BL, Kulshreshtha D et al (2013b) De novo transcriptome sequencing reveals important molecular networks and metabolic pathways of the plant Chlorophytum borivilianum. PLoS ONE 8:e83336
pubmed: 24376689 pmcid: 3871651 doi: 10.1371/journal.pone.0083336
Kaushik N (2005) Saponins of Chlorophytum species. Phytochem Rev 4:191–196
doi: 10.1007/s11101-005-2607-5
Kemen AC, Honkanen S, Melton RE et al (2014) Investigation of triterpene synthesis and regulation in oats reveals a role for β-amyrin in determining root epidermal cell patterning. Proc Natl Acad Sci 111:8679–8684
pubmed: 24912185 pmcid: 4060722 doi: 10.1073/pnas.1401553111
Khakimov B, Kuzina V, Erthmann PØ et al (2015) Identification and genome organization of saponin pathway genes from a wild crucifer, and their use for transient production of saponins in Nicotiana benthamiana. Plant J 84:478–490
pubmed: 26333142 doi: 10.1111/tpj.13012
Kibbe WA (2007) OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res 35:W43–W46
pubmed: 17452344 pmcid: 1933198 doi: 10.1093/nar/gkm234
Kumar R, Singh AK, Gupta A et al (2019) Therapeutic potential of Aloe vera—a miracle gift of nature. Phytomedicine 60:152996
pubmed: 31272819 doi: 10.1016/j.phymed.2019.152996
Lee M-H, Jeong J-H, Seo J-W et al (2004) Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene. Plant Cell Physiol 45:976–984
pubmed: 15356323 doi: 10.1093/pcp/pch126
Liu Y, Zhao Z, Xue Z et al (2016) An intronless β-amyrin synthase gene is more efficient in oleanolic acid accumulation than its paralog in Gentiana straminea. Sci Rep 6:1–13
Liu Y, Zhou J, Hu T et al (2020) Identification and functional characterization of squalene epoxidases and oxidosqualene cyclases from Tripterygium wilfordii. Plant Cell Rep 39:409–418
pubmed: 31838574 doi: 10.1007/s00299-019-02499-7
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408
pubmed: 11846609 doi: 10.1006/meth.2001.1262
Mahadevan S, Park Y (2008) Multifaceted therapeutic benefits of Ginkgo biloba L.: chemistry, efficacy, safety, and uses. J Food Sci 73:R14–R19
pubmed: 18211362 doi: 10.1111/j.1750-3841.2007.00597.x
Moses T, Papadopoulou KK, Osbourn A (2014) Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives. Crit Rev Biochem Mol Biol 49:439–462
pubmed: 25286183 pmcid: 4266039 doi: 10.3109/10409238.2014.953628
Okwor OH, Ogugua VN, Okagu IU (2020) Therapeutic evaluation of anti-trypanosoma activity of ethanol extracts of Jatropha curcas roots in comparison with diminazene aceturate in Trypanosoma brucei brucei–parasitized rats. Comp Clin Path 29:1189–1198
doi: 10.1007/s00580-020-03171-3
Pathi KM, Tula S, Tuteja N (2013) High frequency regeneration via direct somatic embryogenesis and efficient Agrobacterium-mediated genetic transformation of tobacco. Plant Signal Behav 8:e24354
pubmed: 23518589 pmcid: 3906319 doi: 10.4161/psb.24354
Rasbery JM, Shan H, LeClair RJ et al (2007) Arabidopsis thaliana squalene epoxidase 1 is essential for root and seed development. J Biol Chem 282:17002–17013
pubmed: 17426032 doi: 10.1074/jbc.M611831200
Razdan S, Bhat WW, Rana S et al (2013) Molecular characterization and promoter analysis of squalene epoxidase gene from Withania somnifera (L.) Dunal. Mol Biol Rep 40:905–916
pubmed: 23065254 doi: 10.1007/s11033-012-2131-9
Rehman S, Khanum A (2011) Isolation and characterization of peptide (s) from Pisum sativum having antimicrobial activity against various bacteria. Pak J Bot 43:2971–2978
Roy S, Pawar S, Chowdhary A (2016) Evaluation of in vitro cytotoxic and antioxidant activity of Datura metel Linn. and Cynodon dactylon Linn. extracts. Pharmacognosy Res 8:123
pubmed: 27034603 pmcid: 4780138 doi: 10.4103/0974-8490.175610
Schaller H (2003) The role of sterols in plant growth and development. Prog Lipid Res 42:163–175
pubmed: 12689617 doi: 10.1016/S0163-7827(02)00047-4
Schmid M, Davison TS, Henz SR et al (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37:501–506
pubmed: 15806101 doi: 10.1038/ng1543
Schrick K, Cordova C, Li G et al (2011) A dynamic role for sterols in embryogenesis of Pisum sativum. Phytochemistry 72:465–475
pubmed: 21315386 doi: 10.1016/j.phytochem.2011.01.009
Seo J-W, Jeong J-H, Shin C-G et al (2005) Overexpression of squalene synthase in Eleutherococcus senticosus increases phytosterol and triterpene accumulation. Phytochemistry 66:869–877
pubmed: 15845405 doi: 10.1016/j.phytochem.2005.02.016
Sharma A, Rana S, Rather GA et al (2020) Characterization and overexpression of sterol Δ22-desaturase, a key enzyme modulates the biosyntheses of stigmasterol and withanolides in Withania somnifera (L.) Dunal. Plant Sci 301:110642
pubmed: 33218619 doi: 10.1016/j.plantsci.2020.110642
Singh R, Geetanjali (2016) Asparagus racemosus: a review on its phytochemical and therapeutic potential. Nat Prod Res 30:1896–1908
pubmed: 26463825 doi: 10.1080/14786419.2015.1092148
Singh K, Raizada J, Bhardwaj P et al (2004) 26S rRNA-based internal control gene primer pair for reverse transcription-polymerase chain reaction-based quantitative expression studies in diverse plant species. Anal Biochem 335:330–333
pubmed: 15556573 doi: 10.1016/j.ab.2004.08.030
Singh AK, Dwivedi V, Rai A et al (2015) Virus-induced gene silencing of Withania somnifera squalene synthase negatively regulates sterol and defence-related genes resulting in reduced withanolides and biotic stress tolerance. Plant Biotechnol J 13:1287–1299
pubmed: 25809293 doi: 10.1111/pbi.12347
Spena A, Schmülling T, Koncz C, Schell JS (1987) Independent and synergistic activity of rol A, B and C loci in stimulating abnormal growth in plants. EMBO J 6:3891–3899
pubmed: 16453816 pmcid: 553866 doi: 10.1002/j.1460-2075.1987.tb02729.x
Suza WP, Chappell J (2016) Spatial and temporal regulation of sterol biosynthesis in Nicotiana benthamiana. Physiol Plant 157:120–134
pubmed: 26671544 doi: 10.1111/ppl.12413
Unland K, Pütter KM, Vorwerk K et al (2018) Functional characterization of squalene synthase and squalene epoxidase in Taraxacum koksaghyz. Plant Direct 2:e00063
pubmed: 31245726 pmcid: 6508512 doi: 10.1002/pld3.63
Wentzinger LF, Bach TJ, Hartmann M-A (2002) Inhibition of squalene synthase and squalene epoxidase in tobacco cells triggers an up-regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Plant Physiol 130:334–346
pubmed: 12226513 pmcid: 166566 doi: 10.1104/pp.004655
Wise AA, Liu Z, Binns AN (2006) Three methods for the introduction of foreign DNA into Agrobacterium. Methods Mol Biol 343:43–53.
Zhang X, Wu J, Dou Y et al (2012) Asiatic acid protects primary neurons against C2-ceramide-induced apoptosis. Eur J Pharmacol 679:51–59
pubmed: 22296759 doi: 10.1016/j.ejphar.2012.01.006

Auteurs

Nishant Kaushal (N)

Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh, 160014, India.

Deepika Verma (D)

Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh, 160014, India.

Anshu Alok (A)

Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh, 160014, India.
UMN · College of Food, Agricultural and Natural Resource Sciences, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA.

Ashutosh Pandey (A)

National Institute of Plant Genome Research, New Delhi, 110067, India.

Kashmir Singh (K)

Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh, 160014, India. kashmirbio@pu.ac.in.

Articles similaires

Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins
Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family
Triticum Transcription Factors Gene Expression Regulation, Plant Plant Proteins Salt Stress
Glycine max Photoperiod Ubiquitin-Protein Ligases Flowers Gene Expression Regulation, Plant

Classifications MeSH