Functional and structural diversification of incomplete phosphotransferase system in cellulose-degrading clostridia.


Journal

The ISME journal
ISSN: 1751-7370
Titre abrégé: ISME J
Pays: England
ID NLM: 101301086

Informations de publication

Date de publication:
06 2023
Historique:
received: 22 09 2022
accepted: 23 02 2023
revised: 21 02 2023
pmc-release: 01 06 2024
medline: 24 5 2023
pubmed: 11 3 2023
entrez: 10 3 2023
Statut: ppublish

Résumé

Carbohydrate utilization is critical to microbial survival. The phosphotransferase system (PTS) is a well-documented microbial system with a prominent role in carbohydrate metabolism, which can transport carbohydrates through forming a phosphorylation cascade and regulate metabolism by protein phosphorylation or interactions in model strains. However, those PTS-mediated regulated mechanisms have been underexplored in non-model prokaryotes. Here, we performed massive genome mining for PTS components in nearly 15,000 prokaryotic genomes from 4,293 species and revealed a high prevalence of incomplete PTSs in prokaryotes with no association to microbial phylogeny. Among these incomplete PTS carriers, a group of lignocellulose degrading clostridia was identified to have lost PTS sugar transporters and carry a substitution of the conserved histidine residue in the core PTS component, HPr (histidine-phosphorylatable phosphocarrier). Ruminiclostridium cellulolyticum was then selected as a representative to interrogate the function of incomplete PTS components in carbohydrate metabolism. Inactivation of the HPr homolog reduced rather than increased carbohydrate utilization as previously indicated. In addition to regulating distinct transcriptional profiles, PTS associated CcpA (Catabolite Control Protein A) homologs diverged from previously described CcpA with varied metabolic relevance and distinct DNA binding motifs. Furthermore, the DNA binding of CcpA homologs is independent of HPr homolog, which is determined by structural changes at the interface of CcpA homologs, rather than in HPr homolog. These data concordantly support functional and structural diversification of PTS components in metabolic regulation and bring novel understanding of regulatory mechanisms of incomplete PTSs in cellulose-degrading clostridia.

Identifiants

pubmed: 36899058
doi: 10.1038/s41396-023-01392-2
pii: 10.1038/s41396-023-01392-2
pmc: PMC10203250
doi:

Substances chimiques

Bacterial Proteins 0
Cellulose 9004-34-6
Histidine 4QD397987E
Phosphoenolpyruvate Sugar Phosphotransferase System EC 2.7.1.-
Phosphotransferases EC 2.7.-
Carbohydrates 0
DNA 9007-49-2

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

823-835

Informations de copyright

© 2023. The Author(s), under exclusive licence to International Society for Microbial Ecology.

Références

Cell. 2019 Sep 19;179(1):59-73.e13
pubmed: 31539500
Appl Environ Microbiol. 2011 Apr;77(8):2727-33
pubmed: 21378054
Cell Mol Life Sci. 2020 Feb;77(3):395-413
pubmed: 31768608
Microbiol Mol Biol Rev. 2014 Jun;78(2):231-56
pubmed: 24847021
Bioinformatics. 2016 Sep 15;32(18):2847-9
pubmed: 27207943
Antimicrob Agents Chemother. 2014;58(2):957-65
pubmed: 24277024
Infect Immun. 2012 Jul;80(7):2464-72
pubmed: 22566508
Nat Microbiol. 2016 Nov 07;1:16203
pubmed: 27819657
Biochemistry. 2002 Jan 15;41(2):511-20
pubmed: 11781089
J Bacteriol. 2000 Nov;182(21):5982-9
pubmed: 11029416
Cell. 2004 Sep 17;118(6):731-41
pubmed: 15369672
Bioinformatics. 2018 Mar 1;34(5):795-802
pubmed: 29028897
Bioinformatics. 2011 Jun 15;27(12):1696-7
pubmed: 21486936
Bioinformatics. 2009 Apr 15;25(8):1091-3
pubmed: 19237447
Bioinformatics. 2022 Nov 30;38(23):5315-5316
pubmed: 36218463
Trends Microbiol. 2010 May;18(5):205-14
pubmed: 20202847
Res Microbiol. 1990 Nov-Dec;141(9):1033-8
pubmed: 2092356
Nat Rev Microbiol. 2003 Nov;1(2):117-26
pubmed: 15035041
Nat Protoc. 2006;1(1):179-85
pubmed: 17406230
Nat Protoc. 2012 Sep;7(9):1728-40
pubmed: 22936215
Cell. 2021 Aug 5;184(16):4137-4153.e14
pubmed: 34256014
Bioinformatics. 2010 Mar 1;26(5):589-95
pubmed: 20080505
Nat Methods. 2022 Jun;19(6):679-682
pubmed: 35637307
Appl Environ Microbiol. 2011 Nov;77(22):7998-8008
pubmed: 21948836
Biotechnol Biofuels. 2013 May 08;6(1):73
pubmed: 23657055
Bioinformatics. 2017 Nov 15;33(22):3645-3647
pubmed: 29036507
Nat Biotechnol. 2021 Apr;39(4):499-509
pubmed: 33169036
Metab Eng. 2020 Jul;60:110-118
pubmed: 32294528
Nat Rev Microbiol. 2008 Aug;6(8):613-24
pubmed: 18628769
Biochemistry. 1989 Dec 26;28(26):9908-12
pubmed: 2515891
Nat Commun. 2020 Sep 18;11(1):4717
pubmed: 32948774
Nat Biotechnol. 2018 Apr;36(4):359-367
pubmed: 29553575
Mol Microbiol. 1998 Apr;28(2):293-303
pubmed: 9622354
Sci Adv. 2018 Jun 01;4(6):eaar7063
pubmed: 29868643
Res Microbiol. 1996 Jul-Sep;147(6-7):551-61
pubmed: 9084769
FEMS Microbiol Rev. 2005 Sep;29(4):741-64
pubmed: 16102601
Nat Biotechnol. 2008 Dec;26(12):1367-72
pubmed: 19029910
J Bacteriol. 2006 Apr;188(7):2614-24
pubmed: 16547049
Nat Commun. 2020 Oct 9;11(1):5104
pubmed: 33037214
Infect Immun. 2010 Apr;78(4):1482-94
pubmed: 20123708
Nat Commun. 2015 Apr 24;6:6900
pubmed: 25908225
J Proteome Res. 2011 Apr 1;10(4):1794-805
pubmed: 21254760
Methods Enzymol. 2011;498:449-71
pubmed: 21601690
J Bacteriol. 2006 Feb;188(4):1260-5
pubmed: 16452407
J Bacteriol. 2012 Jun;194(12):3088-97
pubmed: 22493022
Appl Environ Microbiol. 2015 Jul;81(13):4423-31
pubmed: 25911483
J Mol Biol. 2017 Mar 24;429(6):773-789
pubmed: 28202392
J Bacteriol. 2008 Apr;190(7):2340-9
pubmed: 18223086
J Bacteriol. 2010 Jun;192(12):3055-67
pubmed: 20400550
Front Microbiol. 2017 Apr 24;8:682
pubmed: 28484436
Microbiol Mol Biol Rev. 2005 Dec;69(4):608-34
pubmed: 16339738
Biotechnol Biofuels. 2012 Jan 04;5(1):2
pubmed: 22214220
Nucleic Acids Res. 2022 Jan 7;50(D1):D785-D794
pubmed: 34520557
Curr Opin Microbiol. 2008 Apr;11(2):87-93
pubmed: 18359269
Appl Environ Microbiol. 2000 Jun;66(6):2461-70
pubmed: 10831425
PLoS One. 2010 Mar 19;5(3):e9605
pubmed: 20333302
J Bacteriol. 1999 Nov;181(22):6996-7004
pubmed: 10559165
J Bacteriol. 2008 Mar;190(5):1499-506
pubmed: 18156277
Curr Opin Microbiol. 2002 Apr;5(2):187-93
pubmed: 11934616
Nucleic Acids Res. 2012 Jan;40(Database issue):D290-301
pubmed: 22127870
Appl Environ Microbiol. 2014 Feb;80(4):1430-40
pubmed: 24334671
Nat Methods. 2009 May;6(5):359-62
pubmed: 19377485
Mol Microbiol. 1995 Mar;15(6):1049-53
pubmed: 7623661
Biochem Biophys Res Commun. 2011 Jun 10;409(3):556-61
pubmed: 21605551
Proc Natl Acad Sci U S A. 1964 Oct;52:1067-74
pubmed: 14224387
Environ Microbiol. 2019 May;21(5):1740-1756
pubmed: 30680880
Microbiology (Reading). 2003 Sep;149(Pt 9):2645-2652
pubmed: 12949188
Bioinformatics. 2009 Aug 15;25(16):2078-9
pubmed: 19505943
Microbiol Spectr. 2014 Aug;2(4):TBS-0010-2012
pubmed: 26104199
ISME J. 2019 Feb;13(2):413-429
pubmed: 30258172
Nature. 2021 Jul;595(7865):91-95
pubmed: 34163075
J Biol Chem. 2020 Aug 21;295(34):12290-12304
pubmed: 32651231
Res Microbiol. 2007 Oct-Nov;158(8-9):666-70
pubmed: 17913467
Microbiol Mol Biol Rev. 2006 Dec;70(4):939-1031
pubmed: 17158705
J Antibiot (Tokyo). 2010 Aug;63(8):442-59
pubmed: 20664603
J Biol Chem. 1997 Oct 17;272(42):26530-5
pubmed: 9334231
Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13442-7
pubmed: 12359880

Auteurs

Tao Xu (T)

Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA.
Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.
Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA.

Xuanyu Tao (X)

Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA.

Hongxi He (H)

School of Life Sciences, Anhui University, Hefei, 230601, PR China.
Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, PR China.

Megan L Kempher (ML)

Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA.

Siping Zhang (S)

Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, PR China.

Xiaochun Liu (X)

School of Life Sciences, Anhui University, Hefei, 230601, PR China.
Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, PR China.

Jun Wang (J)

School of Life Sciences, Anhui University, Hefei, 230601, PR China.
Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, PR China.

Dongyu Wang (D)

Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA.

Daliang Ning (D)

Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA.

Chongle Pan (C)

Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA.
School of computer science, University of Oklahoma, Norman, OK, USA.

Honghua Ge (H)

School of Life Sciences, Anhui University, Hefei, 230601, PR China.
Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, PR China.

Nannan Zhang (N)

School of Life Sciences, Anhui University, Hefei, 230601, PR China. zhangnn@ahu.edu.cn.
Institutes of Material Science and Information Technology, Anhui University, Hefei, 230601, PR China. zhangnn@ahu.edu.cn.

Yong-Xing He (YX)

Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, PR China. heyx@lzu.edu.cn.

Jizhong Zhou (J)

Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA. jzhou@ou.edu.
School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA. jzhou@ou.edu.
Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. jzhou@ou.edu.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria

Two codependent routes lead to high-level MRSA.

Abimbola Feyisara Adedeji-Olulana, Katarzyna Wacnik, Lucia Lafage et al.
1.00
Methicillin-Resistant Staphylococcus aureus Penicillin-Binding Proteins Peptidoglycan Bacterial Proteins Anti-Bacterial Agents
DNA Methylation Humans DNA Animals Machine Learning
DNA Glycosylases Nucleosomes Humans 8-Hydroxy-2'-Deoxyguanosine DNA Repair

Classifications MeSH