Genome manipulation by guide-directed Argonaute cleavage.


Journal

Nucleic acids research
ISSN: 1362-4962
Titre abrégé: Nucleic Acids Res
Pays: England
ID NLM: 0411011

Informations de publication

Date de publication:
08 05 2023
Historique:
accepted: 12 03 2023
revised: 24 02 2023
received: 12 08 2022
medline: 9 5 2023
pubmed: 18 3 2023
entrez: 17 3 2023
Statut: ppublish

Résumé

Many prokaryotic argonautes (pAgos) mediate DNA interference by using small DNA guides to cleave target DNA. A recent study shows that CbAgo, a pAgo from Clostridium butyricum, induces DNA interference between homologous sequences and generates double-stranded breaks (DSBs) in target DNAs. This mechanism enables the host to defend against invading DNAs such as plasmids and viruses. However, whether such a CbAgo-mediated DNA cleavage is mutagenic remains unexplored. Here we demonstrate that CbAgo, directed by plasmid-encoded guide sequences, can cleave genome target sites and induce chromosome recombination between downstream homologous sequences in Escherichia coli. The recombination rate correlates well with pAgo DNA cleavage activity and the mechanistic study suggests the recombination involves DSBs and RecBCD processing. In RecA-deficient E. coli strain, guide-directed CbAgo cleavage on chromosomes severely impairs cell growth, which can be utilized as counter-selection to assist Lambda-Red recombineering. These findings demonstrate the guide-directed cleavage of pAgo on the host genome is mutagenic and can lead to different outcomes according to the function of the host DNA repair machinery. We anticipate this novel DNA-guided interference to be useful in broader genetic manipulation. Our study also provides an in vivo assay to characterize or engineer pAgo DNA cleavage activity.

Identifiants

pubmed: 36928676
pii: 7079637
doi: 10.1093/nar/gkad188
pmc: PMC10164581
doi:

Substances chimiques

Argonaute Proteins 0
DNA 9007-49-2

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

4078-4085

Informations de copyright

© The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research.

Références

Mol Cell. 2013 Sep 12;51(5):594-605
pubmed: 24034694
Biol Direct. 2009 Aug 25;4:29
pubmed: 19706170
Mol Cell. 2017 Mar 16;65(6):985-998.e6
pubmed: 28262506
Bioinformatics. 2009 Jun 15;25(12):1564-5
pubmed: 19369502
ACS Synth Biol. 2017 May 19;6(5):752-757
pubmed: 28165224
Nucleic Acids Res. 2015 May 26;43(10):5120-9
pubmed: 25925567
Proc Natl Acad Sci U S A. 2014 Jan 14;111(2):652-7
pubmed: 24374628
Nucleic Acids Res. 2023 May 8;51(8):4086-4099
pubmed: 36987855
PLoS One. 2015 Apr 22;10(4):e0124880
pubmed: 25902012
EMBO J. 1997 Jun 2;16(11):3332-40
pubmed: 9214648
Nucleic Acids Res. 2021 Apr 19;49(7):4054-4065
pubmed: 33744962
Nucleic Acids Res. 2019 Jun 20;47(11):5822-5836
pubmed: 31114878
Nat Biotechnol. 2014 Nov;32(11):1141-5
pubmed: 25240928
ACS Synth Biol. 2017 Dec 15;6(12):2209-2218
pubmed: 28915012
Nucleic Acids Res. 2021 Sep 27;49(17):9926-9937
pubmed: 34478558
Microbiol Mol Biol Rev. 2012 Jun;76(2):217-28
pubmed: 22688812
Nucleic Acids Res. 2019 Jun 20;47(11):5809-5821
pubmed: 31069393
Cell Discov. 2019 Jul 30;5:38
pubmed: 31636952
Nat Biotechnol. 2013 Mar;31(3):233-9
pubmed: 23360965
Nature. 2020 Nov;587(7835):632-637
pubmed: 32731256
Cell. 2020 Sep 17;182(6):1545-1559.e18
pubmed: 32846159
J Mol Biol. 1985 Sep 20;185(2):431-43
pubmed: 2997450
Trends Biochem Sci. 2000 Apr;25(4):173-8
pubmed: 10754549
FEMS Microbiol Rev. 2020 May 1;44(3):351-368
pubmed: 32286623
Mol Cell. 2008 Mar 14;29(5):644-51
pubmed: 18342610
Nat Rev Microbiol. 2013 Jan;11(1):9-13
pubmed: 23202527
J Bacteriol. 1997 Feb;179(3):880-8
pubmed: 9006046
J Mol Biol. 1975 Jan 5;91(1):53-66
pubmed: 1102696
J Bacteriol. 1993 Sep;175(17):5505-9
pubmed: 8366035
Microbiol Mol Biol Rev. 2008 Dec;72(4):642-71, Table of Contents
pubmed: 19052323
Nat Microbiol. 2017 Mar 20;2:17035
pubmed: 28319084
Wiley Interdiscip Rev RNA. 2015 Nov-Dec;6(6):687-708
pubmed: 26439796
Nucleic Acids Res. 2019 Apr 23;47(7):3568-3579
pubmed: 30698806
Nucleic Acids Res. 2021 Feb 22;49(3):1597-1608
pubmed: 33444443
Nat Rev Genet. 2013 Jul;14(7):447-59
pubmed: 23732335
Nat Rev Microbiol. 2018 Jan;16(1):5-11
pubmed: 28736447
mBio. 2018 Dec 18;9(6):
pubmed: 30563906
Nucleic Acids Res. 2022 May 6;50(8):4616-4629
pubmed: 35420131
Nat Genet. 2007 Jun;39(6):797-802
pubmed: 17529976
Nat Struct Mol Biol. 2014 Sep;21(9):743-53
pubmed: 25192263
Nature. 2014 Mar 13;507(7491):258-261
pubmed: 24531762

Auteurs

Shan Huang (S)

Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 114-96, 1200 East California Boulevard, Pasadena, CA 91125, USA.

Kaihang Wang (K)

Division of Biology and Biological Engineering, California Institute of Technology, MC 114-96, 1200 East California Boulevard, Pasadena, CA 91125, USA.

Stephen L Mayo (SL)

Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 114-96, 1200 East California Boulevard, Pasadena, CA 91125, USA.
Division of Biology and Biological Engineering, California Institute of Technology, MC 114-96, 1200 East California Boulevard, Pasadena, CA 91125, USA.

Articles similaires

Coal Metagenome Phylogeny Bacteria Genome, Bacterial
Genome, Bacterial Virulence Phylogeny Genomics Plant Diseases
Female Biofilms Animals Lactobacillus Mice
Vibrio Whole Genome Sequencing Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization Genome, Bacterial Water Microbiology

Classifications MeSH