The Australasian dingo archetype: de novo chromosome-length genome assembly, DNA methylome, and cranial morphology.


Journal

GigaScience
ISSN: 2047-217X
Titre abrégé: Gigascience
Pays: United States
ID NLM: 101596872

Informations de publication

Date de publication:
20 03 2023
Historique:
received: 26 09 2022
revised: 13 01 2023
accepted: 28 02 2023
medline: 31 3 2023
entrez: 30 3 2023
pubmed: 31 3 2023
Statut: ppublish

Résumé

One difficulty in testing the hypothesis that the Australasian dingo is a functional intermediate between wild wolves and domesticated breed dogs is that there is no reference specimen. Here we link a high-quality de novo long-read chromosomal assembly with epigenetic footprints and morphology to describe the Alpine dingo female named Cooinda. It was critical to establish an Alpine dingo reference because this ecotype occurs throughout coastal eastern Australia where the first drawings and descriptions were completed. We generated a high-quality chromosome-level reference genome assembly (Canfam_ADS) using a combination of Pacific Bioscience, Oxford Nanopore, 10X Genomics, Bionano, and Hi-C technologies. Compared to the previously published Desert dingo assembly, there are large structural rearrangements on chromosomes 11, 16, 25, and 26. Phylogenetic analyses of chromosomal data from Cooinda the Alpine dingo and 9 previously published de novo canine assemblies show dingoes are monophyletic and basal to domestic dogs. Network analyses show that the mitochondrial DNA genome clusters within the southeastern lineage, as expected for an Alpine dingo. Comparison of regulatory regions identified 2 differentially methylated regions within glucagon receptor GCGR and histone deacetylase HDAC4 genes that are unmethylated in the Alpine dingo genome but hypermethylated in the Desert dingo. Morphologic data, comprising geometric morphometric assessment of cranial morphology, place dingo Cooinda within population-level variation for Alpine dingoes. Magnetic resonance imaging of brain tissue shows she had a larger cranial capacity than a similar-sized domestic dog. These combined data support the hypothesis that the dingo Cooinda fits the spectrum of genetic and morphologic characteristics typical of the Alpine ecotype. We propose that she be considered the archetype specimen for future research investigating the evolutionary history, morphology, physiology, and ecology of dingoes. The female has been taxidermically prepared and is now at the Australian Museum, Sydney.

Sections du résumé

BACKGROUND
One difficulty in testing the hypothesis that the Australasian dingo is a functional intermediate between wild wolves and domesticated breed dogs is that there is no reference specimen. Here we link a high-quality de novo long-read chromosomal assembly with epigenetic footprints and morphology to describe the Alpine dingo female named Cooinda. It was critical to establish an Alpine dingo reference because this ecotype occurs throughout coastal eastern Australia where the first drawings and descriptions were completed.
FINDINGS
We generated a high-quality chromosome-level reference genome assembly (Canfam_ADS) using a combination of Pacific Bioscience, Oxford Nanopore, 10X Genomics, Bionano, and Hi-C technologies. Compared to the previously published Desert dingo assembly, there are large structural rearrangements on chromosomes 11, 16, 25, and 26. Phylogenetic analyses of chromosomal data from Cooinda the Alpine dingo and 9 previously published de novo canine assemblies show dingoes are monophyletic and basal to domestic dogs. Network analyses show that the mitochondrial DNA genome clusters within the southeastern lineage, as expected for an Alpine dingo. Comparison of regulatory regions identified 2 differentially methylated regions within glucagon receptor GCGR and histone deacetylase HDAC4 genes that are unmethylated in the Alpine dingo genome but hypermethylated in the Desert dingo. Morphologic data, comprising geometric morphometric assessment of cranial morphology, place dingo Cooinda within population-level variation for Alpine dingoes. Magnetic resonance imaging of brain tissue shows she had a larger cranial capacity than a similar-sized domestic dog.
CONCLUSIONS
These combined data support the hypothesis that the dingo Cooinda fits the spectrum of genetic and morphologic characteristics typical of the Alpine ecotype. We propose that she be considered the archetype specimen for future research investigating the evolutionary history, morphology, physiology, and ecology of dingoes. The female has been taxidermically prepared and is now at the Australian Museum, Sydney.

Identifiants

pubmed: 36994871
pii: 7086663
doi: 10.1093/gigascience/giad018
pmc: PMC10353722
pii:
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S. Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : NHGRI NIH HHS
ID : UM1 HG009375
Pays : United States
Organisme : NHGRI NIH HHS
ID : RM1 HG011016
Pays : United States

Commentaires et corrections

Type : UpdateOf

Informations de copyright

© The Author(s) 2023. Published by Oxford University Press GigaScience.

Références

Genes (Basel). 2021 May 30;12(6):
pubmed: 34070911
PeerJ. 2019 Dec 13;7:e8206
pubmed: 31844586
Biomark Med. 2016 Nov;10(11):1141-1151
pubmed: 27611762
Proc Natl Acad Sci U S A. 2004 Aug 17;101(33):12387-90
pubmed: 15299143
PLoS One. 2018 Jun 11;13(6):e0198754
pubmed: 29889854
Commun Biol. 2021 Feb 10;4(1):185
pubmed: 33568770
Nucleic Acids Res. 2013 Sep;41(16):e155
pubmed: 23828043
Sci Rep. 2017 Oct 18;7(1):13443
pubmed: 29044203
BMC Genomics. 2021 Mar 16;22(1):188
pubmed: 33726677
Bioinformatics. 2009 Jul 15;25(14):1754-60
pubmed: 19451168
Sci Rep. 2018 Jun 14;8(1):9130
pubmed: 29904060
Life Sci Alliance. 2021 Jan 29;4(4):
pubmed: 33514656
Bioinformatics. 2018 Mar 1;34(5):725-731
pubmed: 29069293
Evolution. 2010 Mar 1;64(3):663-74
pubmed: 19796145
Wellcome Open Res. 2021 Nov 12;6:310
pubmed: 34926833
Nat Commun. 2019 Oct 25;10(1):4872
pubmed: 31653862
R Soc Open Sci. 2016 Oct 12;3(10):160342
pubmed: 27853548
Curr Zool. 2021 Mar 17;68(4):423-432
pubmed: 36090142
Nat Methods. 2018 Jun;15(6):461-468
pubmed: 29713083
Sci Rep. 2016 Jul 27;6:30556
pubmed: 27460289
Bioinformatics. 2005 Nov 1;21 Suppl 3:iii3-11
pubmed: 16306389
Nucleic Acids Res. 2019 Nov 18;47(20):10543-10552
pubmed: 31584075
Science. 2017 Apr 7;356(6333):92-95
pubmed: 28336562
Magn Reson Imaging. 2012 Nov;30(9):1323-41
pubmed: 22770690
Genes Brain Behav. 2021 Mar;20(3):e12721
pubmed: 33314580
Berl Munch Tierarztl Wochenschr. 1999 Jun-Jul;112(6-7):234-8
pubmed: 10472721
Cell. 2014 Dec 18;159(7):1665-80
pubmed: 25497547
PLoS One. 2014 Mar 13;9(3):e91172
pubmed: 24625832
Sci Rep. 2019 Apr 24;9(1):6478
pubmed: 31019244
Mol Biol Evol. 2020 May 1;37(5):1462-1469
pubmed: 31913480
Cell Syst. 2018 Feb 28;6(2):256-258.e1
pubmed: 29428417
Microbiome. 2020 Apr 3;8(1):48
pubmed: 32245390
Gigascience. 2023 Mar 20;12:
pubmed: 36994871
C R Biol. 2011 Mar;334(3):171-81
pubmed: 21377611
Nature. 2008 Aug 7;454(7205):766-70
pubmed: 18600261
Nucleic Acids Res. 2011 Jul;39(Web Server issue):W29-37
pubmed: 21593126
Genome Biol. 2020 Sep 14;21(1):245
pubmed: 32928274
Zootaxa. 2019 Mar 04;4564(1):zootaxa.4564.1.6
pubmed: 31716519
Physiol Behav. 2004 Sep 15;82(2-3):513-8
pubmed: 15276817
J Mol Cell Biol. 2019 Feb 1;11(2):158-169
pubmed: 29800227
Mol Ecol Resour. 2011 Mar;11(2):353-7
pubmed: 21429143
Genome Res. 2017 May;27(5):737-746
pubmed: 28100585
J Genet Genomics. 2022 Dec;49(12):1174-1176
pubmed: 35436609
Nat Rev Genet. 2006 Aug;7(8):645-53
pubmed: 16847464
J Biol Chem. 2020 Dec 25;295(52):18406-18425
pubmed: 33127643
Ecol Evol. 2017 Oct 19;7(22):9787-9807
pubmed: 29188009
Methods Mol Biol. 2019;1962:161-177
pubmed: 31020559
Heredity (Edinb). 2016 Nov;117(5):301-306
pubmed: 27406651
Genome Res. 2016 Dec;26(12):1663-1675
pubmed: 27934698
Bioinformatics. 2015 Oct 1;31(19):3210-2
pubmed: 26059717
Elife. 2019 May 14;8:
pubmed: 31084707
Nucleic Acids Res. 2003 Jul 1;31(13):3406-15
pubmed: 12824337
Genome Res. 2009 Sep;19(9):1639-45
pubmed: 19541911
Nat Genet. 2016 Apr;48(4):417-26
pubmed: 26928226
Mol Biol Evol. 2018 Feb 1;35(2):287-298
pubmed: 29040727
Genetics. 2014 Nov;198(3):1277-90
pubmed: 25189874
G3 (Bethesda). 2016 Sep 08;6(9):2687-92
pubmed: 27527794
Genome Res. 2006 Aug;16(8):990-4
pubmed: 16809672
Am Nat. 2010 Mar;175(3):289-301
pubmed: 20095825
Z Anat Entwicklungsgesch. 1974 Jul 5;144(1):61-73
pubmed: 4851103
J Clin Invest. 2013 Nov;123(11):4706-13
pubmed: 24216484
Genome Res. 2017 May;27(5):722-736
pubmed: 28298431
Mol Ecol. 2015 Nov;24(22):5643-56
pubmed: 26514639
Brain Behav Evol. 2005;65(2):73-108
pubmed: 15627722
Cell Syst. 2016 Jul;3(1):99-101
pubmed: 27467250
J Exp Zool B Mol Dev Evol. 2022 Dec;338(8):460-483
pubmed: 34813150
Mol Biol Evol. 2009 Dec;26(12):2849-64
pubmed: 19723671
Neuron. 2015 Jun 17;86(6):1369-84
pubmed: 26087164
Nat Protoc. 2015 Mar;10(3):475-83
pubmed: 25692984
Nat Commun. 2020 Feb 3;11(1):671
pubmed: 32015346
Proc Natl Acad Sci U S A. 2018 Jul 10;115(28):7380-7385
pubmed: 29941556
Sci Adv. 2022 Apr 22;8(16):eabm5944
pubmed: 35452284
Annu Rev Anim Biosci. 2017 Feb 8;5:281-307
pubmed: 27912242
PLoS Comput Biol. 2018 Jan 26;14(1):e1005944
pubmed: 29373581
Trends Ecol Evol. 2020 Dec;35(12):1061-1062
pubmed: 33129589
Gigascience. 2020 Apr 1;9(4):
pubmed: 32236524
Science. 2013 Nov 15;342(6160):871-4
pubmed: 24233726
PLoS One. 2012;7(11):e47768
pubmed: 23185243
PLoS One. 2014 Nov 19;9(11):e112963
pubmed: 25409509
Front Zool. 2019 Feb 13;16:2
pubmed: 30805020
J Anim Ecol. 2019 Dec;88(12):1986-1997
pubmed: 31365124
Nature. 2011 Dec 14;480(7378):490-5
pubmed: 22170606
Biology (Basel). 2021 Jun 05;10(6):
pubmed: 34198745
Science. 2022 Jul 22;377(6604):399-405
pubmed: 35862520
PLoS Genet. 2014 Jan;10(1):e1004016
pubmed: 24453982
Bioinformatics. 2018 Sep 15;34(18):3094-3100
pubmed: 29750242
Mol Biol Evol. 2000 Apr;17(4):474-88
pubmed: 10742040
PLoS Genet. 2017 Mar 3;13(3):e1006661
pubmed: 28257443
J Mol Biol. 1990 Oct 5;215(3):403-10
pubmed: 2231712
Genetica. 2016 Oct;144(5):553-565
pubmed: 27640201
J Hum Evol. 2008 May;54(5):568-90
pubmed: 18068214
Zootaxa. 2019 Mar 04;4564(1):zootaxa.4564.1.7
pubmed: 31716520
PLoS Genet. 2012 Sep;8(9):e1002962
pubmed: 23028369
Nature. 2015 Jan 15;517(7534):321-6
pubmed: 25592537
Proc Natl Acad Sci U S A. 2021 Mar 16;118(11):
pubmed: 33836575
Nucleic Acids Res. 2006 Jul 19;34(12):3546-54
pubmed: 16855291

Auteurs

J William O Ballard (JWO)

School of Biosciences, University of Melbourne, Royal Parade, Parkville, Victoria 3052, Australia.
Department of Environment and Genetics, SABE, La Trobe University, Melbourne, Victoria 3086, Australia.

Matt A Field (MA)

Centre for Tropical Bioinformatics and Molecular Biology, College of Public Health, Medical and Veterinary Science, James Cook University, Cairns, Queensland 4870, Australia.
Immunogenomics Lab, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia.

Richard J Edwards (RJ)

School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.

Laura A B Wilson (LAB)

School of Archaeology and Anthropology, The Australian National University, Acton, ACT 2600, Australia.
School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.

Loukas G Koungoulos (LG)

Department of Archaeology, School of Philosophical and Historical Inquiry, the University of Sydney, Sydney, NSW 2006, Australia.

Benjamin D Rosen (BD)

Animal Genomics and Improvement Laboratory, Agricultural Research Service USDA, Beltsville, MD 20705, USA.

Barry Chernoff (B)

College of the Environment, Departments of Biology, and Earth & Environmental Sciences, Wesleyan University, Middletown, CT 06459, USA.

Olga Dudchenko (O)

The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
Center for Theoretical and Biological Physics, Rice University, Houston, TX 77005, USA.

Arina Omer (A)

Center for Theoretical and Biological Physics, Rice University, Houston, TX 77005, USA.

Jens Keilwagen (J)

Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institut, Quedlinburg 06484, Germany.

Ksenia Skvortsova (K)

Developmental Epigenomics Lab, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.

Ozren Bogdanovic (O)

Developmental Epigenomics Lab, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.

Eva Chan (E)

Developmental Epigenomics Lab, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.
Statewide Genomics, New South Wales Health Pathology, Newcastle, NSW 2300, Australia.

Robert Zammit (R)

Vineyard Veterinary Hospital,Vineyard, NSW 2765, Australia.

Vanessa Hayes (V)

Developmental Epigenomics Lab, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.
Charles Perkins Centre, Faculty of Medical Sciences, University of Sydney, Camperdown, NSW 2006, Australia.

Erez Lieberman Aiden (EL)

The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
Center for Theoretical and Biological Physics, Rice University, Houston, TX 77005, USA.
UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia.
Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH