A Trifolium repens flavodoxin-like quinone reductase 1 (TrFQR1) improves plant adaptability to high temperature associated with oxidative homeostasis and lipids remodeling.


Journal

The Plant journal : for cell and molecular biology
ISSN: 1365-313X
Titre abrégé: Plant J
Pays: England
ID NLM: 9207397

Informations de publication

Date de publication:
Jul 2023
Historique:
revised: 20 03 2023
received: 31 08 2022
accepted: 26 03 2023
medline: 17 7 2023
pubmed: 4 4 2023
entrez: 3 4 2023
Statut: ppublish

Résumé

Maintenance of stable mitochondrial respiratory chains could enhance adaptability to high temperature, but the potential mechanism was not elucidated clearly in plants. In this study, we identified and isolated a TrFQR1 gene encoding the flavodoxin-like quinone reductase 1 (TrFQR1) located in mitochondria of leguminous white clover (Trifolium repens). Phylogenetic analysis indicated that amino acid sequences of FQR1 in various plant species showed a high degree of similarities. Ectopic expression of TrFQR1 protected yeast (Saccharomyces cerevisiae) from heat damage and toxic levels of benzoquinone, phenanthraquinone and hydroquinone. Transgenic Arabidopsis thaliana and white clover overexpressing TrFQR1 exhibited significantly lower oxidative damage and better photosynthetic capacity and growth than wild-type in response to high-temperature stress, whereas AtFQR1-RNAi A. thaliana showed more severe oxidative damage and growth retardation under heat stress. TrFQR1-transgenic white clover also maintained better respiratory electron transport chain than wild-type plants, as manifested by significantly higher mitochondrial complex II and III activities, alternative oxidase activity, NAD(P)H content, and coenzyme Q10 content in response to heat stress. In addition, overexpression of TrFQR1 enhanced the accumulation of lipids including phosphatidylglycerol, monogalactosyl diacylglycerol, sulfoquinovosyl diacylglycerol and cardiolipin as important compositions of bilayers involved in dynamic membrane assembly in mitochondria or chloroplasts positively associated with heat tolerance. TrFQR1-transgenic white clover also exhibited higher lipids saturation level and phosphatidylcholine:phosphatidylethanolamine ratio, which could be beneficial to membrane stability and integrity during a prolonged period of heat stress. The current study proves that TrFQR1 is essential for heat tolerance associated with mitochondrial respiratory chain, cellular reactive oxygen species homeostasis, and lipids remodeling in plants. TrFQR1 could be selected as a key candidate marker gene to screen heat-tolerant genotypes or develop heat-tolerant crops via molecular-based breeding.

Identifiants

pubmed: 37009644
doi: 10.1111/tpj.16230
doi:

Substances chimiques

Flavodoxin 0
Diglycerides 0
Plant Proteins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

369-385

Subventions

Organisme : Sichuan Forage Innovation Team Program
ID : sccxtd-2020-16
Organisme : Sichuan Science and Technology Program
ID : 2022YFH0059

Informations de copyright

© 2023 Society for Experimental Biology and John Wiley & Sons Ltd.

Références

Abdelrahman, M., Ishii, T., El-Sayed, M. & Tran, L. (2020) Heat sensing and lipid reprograming as a signaling switch for heat stress responses in wheat. Plant and Cell Physiology, 61, 1399-1407.
Arenas-Jal, M., Suñé-Negre, J. & García-Montoya, E. (2020) Coenzyme Q10 supplementation: efficacy, safety, and formulation challenges. Comprehensive Reviews in Food Science and Food Safety, 19, 574-594.
Arnon, D.I. (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24, 1-15.
Barnes, J.D., Balaguer, L., Manrique, E., Elvira, S. & Davison, A.W. (1992) A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environmental and Experimental Botany, 32, 85-100.
Bauwe, H., Hagemann, M. & Fernie, A.R. (2010) Photorespiration: players, partners and origin. Trends in Plant Science, 15, 330-336.
Bita, C.E. & Gerats, T. (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science, 4, 273.
Blacker, T.S. & Duchen, M.R. (2016) Investigating mitochondrial redox state using NADH and NADPH autofluorescence. Free Radical Biology and Medicine, 100, 53-65.
Blum, A. & Ebercon, A. (1981) Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Science, 21, 43-47.
Buttar, Z.A., Wu, S.N., Arnao, M.B., Wang, C., Ullah, I. & Wang, C. (2020) Melatonin suppressed the heat stress-induced damage in wheat seedlings by modulating the antioxidant machinery. Plants, 9, 809.
Chen, S., Chen, M., Li, Y., Huang, X., Niu, D., Rashid, A. et al. (2021) Adjustments of both phospholipids and sphingolipids contribute to cold tolerance in stony hard peach fruit by continuous ethylene. Postharvest Biology and Technology, 171, 111332.
Clough, S.J. & Bent, A.F. (1998) Floral dip: a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal, 16, 735-743.
Deller, S., Macheroux, P. & Sollner, S. (2008) Flavin-dependent quinone reductases. Cellular and Molecular Life Sciences, 65, 141-160.
Dhindsa, R., Plumb-Dhindsa, P. & Thorpe, T. (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, 32, 93-101.
Dudkina, N.V., Kouřil, R., Peters, K., Braun, H.P. & Boekema, E.J. (2010) Structure and function of mitochondrial supercomplexes. Biochimica et Biophysica Acta, 1797, 664-670.
Dunand, C., Crèvecoeur, M. & Penel, C. (2007) Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development: possible interaction with peroxidases. New Phytologist, 174, 332-341.
Dutilleul, C., Chavarria, H., Rézé, N., Sotta, B., Baudouin, E. & Guillas, I. (2015) Evidence for ACD 5 ceramide kinase activity involvement in Arabidopsis response to cold stress. Plant, Cell & Environment, 38, 2688-2697.
Elstner, E.F. & Heupel, A. (1976) Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase. Analytical Biochemistry, 70, 616-620.
Epand, R.F., Tokarska-Schlattner, M., Schlattner, U., Wallimann, T. & Epand, R.M. (2007) Cardiolipin clusters and membrane domain formation induced by mitochondrial proteins. Journal of Molecular Biology, 365, 968-980.
Fan, H., Liu, Y., Li, C.Y., Jiang, Y., Song, J.J., Yang, L. et al. (2021) Engineering high coenzyme Q10 tomato. Metabolic Engineering, 68, 86-93.
Fernie, A.R., Carrari, F. & Sweetlove, L.J. (2004) Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Current Opinion in Plant Biology, 7, 254-261.
Gao, Y., Li, M., Zhang, X., Yang, Q. & Huang, B. (2020) Up-regulation of lipid metabolism and glycine betaine synthesis are associated with choline-induced salt tolerance in halophytic seashore paspalum. Plant, Cell & Environment, 43, 159-173.
Gietz, R.D. & Woods, R.A. (2006) Yeast transformation by the LiAc/SS carrier DNA/PEG method. Methods in Molecular Biology, 313, 107-120.
Gong, Z., Xiong, L., Shi, H., Yang, S., Herrera-Estrella, L.R., Xu, G. et al. (2020) Plant abiotic stress response and nutrient use efficiency. Science China. Life Sciences, 63, 635-674.
Hasanuzzaman, M., Bhuyan, M., Zulfiqar, F., Raza, A., Mohsin, S.M., Mahmud, J.A. et al. (2020) Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants, 9, 681.
Hassan, M.J., Qi, H., Cheng, B., Hussain, S., Peng, Y., Liu, W. et al. (2022) Enhanced adaptability to limited water supply regulated by diethyl aminoethyl hexanoate (DA-6) associated with lipidomic reprogramming in two white clover genotypes. Frontiers in Plant Science, 13, 879331.
Heyno, E., Alkan, N. & Fluhr, R. (2013) A dual role for plant quinone reductases in host-fungus interaction. Physiologia Plantarum, 149, 340-353.
Higashi, Y. & Saito, K. (2019) Lipidomic studies of membrane glycerolipids in plant leaves under heat stress. Progress in Lipid Research, 75, 100990.
Hogland, C.R. & Arnon, D.I. (1950) The solution-culture method for growing plants without soil. California Agricultural Experiment Station, Circular, 347, 1-32.
Huang, S., Braun, H.P., Gawryluk, R.M. & Millar, A.H. (2019) Mitochondrial complex II of plants: subunit composition, assembly, and function in respiration and signaling. The Plant Journal, 98, 405-417.
Jardim-Messeder, D., Caverzan, A., Rauber, R., Ferreira, E.D.S., Margis-Pinheiro, M. & Galina, A. (2015) Succinate dehydrogenase (mitochondrial complex II) is a source of reactive oxygen species in plants and regulates development and stress responses. New Phytologist, 208, 776-789.
Jespersen, D., Zhang, J. & Huang, B. (2016) Chlorophyll loss associated with heat-induced senescence in bentgrass. Plant Science, 249, 1-12.
Jiang, Y., Yang, B., Harris, N.S. & Deyholos, M.K. (2007) Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. Journal of Experimental Botany, 58, 3591-3607.
Karpiński, S., Szechyńska-Hebda, M., Wituszyńska, W. & Burdiak, P. (2013) Light acclimation, retrograde signalling, cell death and immune defences in plants. Plant, Cell & Environment, 36, 736-744.
Lane, L., Ayres, J. & Lovett, J. (2000) The pastoral significance, adaptive characteristics, and grazing value of white clover (Trifolium repens L.) in dryland environments in Australia: a review. Australian Journal of Experimental Agriculture, 40, 1033-1046.
Laskowski, M.J., Dreher, K.A., Gehring, M.A., Abel, S., Gensler, A.L. & Sussex, I.M. (2002) FQR1, a novel primary auxin-response gene, encodes a flavin mononucleotide-binding quinone reductase. Plant Physiology, 128, 578-590.
Lee, B.J., Huang, Y.C., Chen, S.J. & Lin, P.T. (2012) Coenzyme Q10 supplementation reduces oxidative stress and increases antioxidant enzyme activity in patients with coronary artery disease. Nutrition, 28, 250-255.
León, G., Holuigue, L. & Jordana, X. (2007) Mitochondrial complex II is essential for gametophyte development in Arabidopsis. Plant Physiology, 143, 1534-1546.
Li, Z., Tang, M., Hassan, M.J., Zhang, Y., Han, L. & Peng, Y. (2021) Adaptability to high temperature and stay-green genotypes associated with variations in antioxidant, chlorophyll metabolism, and γ-aminobutyric acid accumulation in creeping bentgrass species. Frontiers in Plant Science, 12, 750728.
Li, Z., Yu, J., Peng, Y. & Huang, B. (2016) Metabolic pathways regulated by γ-aminobutyric acid (GABA) contributing to heat tolerance in creeping bentgrass (Agrostis stolonifera). Scientific Reports, 6, 30338.
Liang, L., Cao, Y., Wang, D., Peng, Y., Zhang, Y. & Li, Z. (2021) Spermine alleviates heat-induced senescence in creeping bentgrass by regulating water and oxidative balance, photosynthesis, and heat shock proteins. Biologia Plantarum, 65, 184-192.
Liu, H.L., Lee, Z.X., Chuang, T.W. & Wu, H.C. (2021) Effect of heat stress on oxidative damage and antioxidant defense system in white clover (Trifolium repens L.). Planta, 254, 1-17.
Liu, M. & Lu, S. (2016) Plastoquinone and ubiquinone in plants: biosynthesis, physiological function and metabolic engineering. Frontiers in Plant Science, 7, 1898.
Liu, X., Ma, D., Zhang, Z., Wang, S., Du, S., Deng, X. et al. (2019) Plant lipid remodeling in response to abiotic stresses. Environmental and Experimental Botany, 165, 174-184.
Luo, L., Li, Z., Tang, M., Cheng, B., Zeng, W., Peng, Y. et al. (2020) Metabolic regulation of polyamines and γ-aminobutyric acid in relation to spermidine-induced heat tolerance in white clover. Plant Biology, 22, 794-804.
Macías, F.A., Mejías, F.J. & Molinillo, J.M. (2019) Recent advances in allelopathy for weed control: from knowledge to applications. Pest Management Science, 75, 2413-2436.
Malakshah, S.N., Rezaei, M.H., Heidari, M. & Salekdeh, G.H. (2007) Proteomics reveals new salt responsive proteins associated with rice plasma membrane. Bioscience, Biotechnology, and Biochemistry, 71, 2144-2154.
Mateo, A., Mühlenbock, P., Rustérucci, C., Chang, C.C.C., Miszalski, Z., Karpinska, B. et al. (2004) LESION SIMULATING DISEASE 1 is required for acclimation to conditions that promote excess excitation energy. Plant Physiology, 136, 2818-2830.
Mittler, R., Finka, A. & Goloubinoff, P. (2012) How do plants feel the heat? Trends in Biochemical Sciences, 37, 118-125.
Møller, I.M., Rasmusson, A.G. & Aken, O.V. (2021) Plant mitochondria-past, present and future. The Plant Journal, 108, 912-959.
Morita, R., Sato, Y., Masuda, Y., Nishimura, M. & Kusaba, M. (2009) Defect in non-yellow coloring 3, an α/β hydrolase-fold family protein, causes a stay-green phenotype during leaf senescence in rice. The Plant Journal, 59, 940-952.
Mühlenbock, P., Szechyńska-Hebda, M., Płaszczyca, M., Baudo, M., Mateo, A., Mullineaux, P.M. et al. (2008) Chloroplast signaling and LESION SIMULATING DISEASE1 regulate crosstalk between light acclimation and immunity in Arabidopsis. The Plant Cell, 20, 2339-2356.
Murakami, Y. & Toriyama, K. (2008) Enhanced high temperature tolerance in transgenic rice seedlings with elevated levels of alternative oxidase, OsAOX1a. Plant Biotechnology, 25, 361-364.
Murik, O., Tirichine, L., Prihoda, J., Thomas, Y., Araújo, W.L., Allen, A.E. et al. (2019) Downregulation of mitochondrial alternative oxidase affects chloroplast function, redox status and stress response in a marine diatom. New Phytologist, 221, 1303-1316.
Narayanan, S., Tamura, P.J., Roth, M.R., Prasad, P.V. & Welti, R. (2016) Wheat leaf lipids during heat stress: I. high day and night temperatures result in major lipid alterations. Plant, Cell & Environment, 39, 787-803.
Narayanan, S., Zoong-Lwe, Z.S., Gandhi, N., Welti, R., Fallen, B., Smith, J.R. et al. (2020) Comparative lipidomic analysis reveals heat stress responses of two soybean genotypes differing in temperature sensitivity. Plants, 9, 457.
Niu, Y. & Xiang, Y. (2018) An overview of biomembrane functions in plant responses to high-temperature stress. Frontiers in Plant Science, 9, 915.
Ohara, K., Kokado, Y., Yamamoto, H., Sato, F. & Yazaki, K. (2004) Engineering of ubiquinone biosynthesis using the yeast coq2 gene confers oxidative stress tolerance in transgenic tobacco. The Plant Journal, 40, 734-743.
Pan, R., Jones, A.D. & Hu, J. (2014) Cardiolipin-mediated mitochondrial dynamics and stress response in Arabidopsis. The Plant Cell, 26, 391-409.
Parmar, S.S., Jaiwal, A., Dhankher, O.P. & Jaiwal, P.K. (2015) Coenzyme Q10 production in plants: current status and future prospects. Critical Reviews in Biotechnology, 35, 152-164.
Qi, H., Kang, D., Zeng, W., Hassan, M.J., Peng, Y., Zhang, X. et al. (2021) Alterations of endogenous hormones, antioxidant metabolism, and aquaporin gene expression in relation to γ-aminobutyric acid-regulated thermotolerance in white clover. Antioxidants, 10, 1099.
Rozhnova, N. & Gerashchenkov, G. (2006) Hormonal status of tobacco variety Samsun NN exposed to synthetic coenzyme Q10 (ubiquinone 50) and TMV infection. Biology Bulletin, 33, 471-478.
Saha, B., Borovskii, G. & Panda, S.K. (2016) Alternative oxidase and plant stress tolerance. Plant Signaling & Behavior, 11, e1256530.
Savitch, L.V., Ivanov, A.G., Gudynaite-Savitch, L., Huner, N.P. & Simmonds, J. (2011) Cold stress effects on PSI photochemistry in Zea mays: differential increase of FQR-dependent cyclic electron flow and functional implications. Plant and Cell Physiology, 52, 1042-1054.
Schlame, M. & Ren, M. (2009) The role of cardiolipin in the structural organization of mitochondrial membranes. Biochimica et Biophysica Acta, 1788, 2080-2083.
Sharma, P., Jha, A.B., Dubey, R.S. & Pessarakli, M. (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 2012, 1-26.
Shiva, S., Samarakoon, T., Lowe, K.A., Roach, C., Vu, H.S., Colter, M. et al. (2020) Leaf lipid alterations in response to heat stress of Arabidopsis thaliana. Plants, 9, 845.
Sparla, F., Tedeschi, G., Pupillo, P. & Trost, P. (1999) Cloning and heterologous expression of NAD (P) H: quinone reductase of Arabidopsis thaliana, a functional homologue of animal DT-diaphorase. FEBS Letters, 463, 382-386.
Su, K., Bremer, D.J., Jeannotte, R., Welti, R. & Yang, C. (2009) Membrane lipid composition and heat tolerance in cool-season turfgrasses, including a hybrid bluegrass. Journal of the American Society for Horticultural Science, 134, 511-520.
Turrens, J.F. (2003) Mitochondrial formation of reactive oxygen species. The Journal of Physiology, 552, 335-344.
Velikova, V., Yordanov, I. & Edreva, A. (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Science, 151, 59-66.
Voisey, C.R., White, D.W., Dudas, B., Appleby, R.D., Ealing, P.M. & Scott, A.G. (1994) Agrobacterium-mediated transformation of white clover using direct shoot organogenesis. Plant Cell Reports, 13, 309-314.
Wang, G., Li, F., Zhang, J., Zhao, M., Hui, Z. & Wang, W. (2010) Overaccumulation of glycine betaine enhances tolerance of the photosynthetic apparatus to drought and heat stress in wheat. Photosynthetica, 48, 30-41.
White, D.W. & Voisey, C. (1994) Prolific direct plant regeneration from cotyledons of white clover. Plant Cell Reports, 13, 303-308.
Wituszyńska, W., Ślesak, I., Vanderauwera, S., Szechyńska-Hebda, M., Kornaś, A., Kelen, K.V.D. et al. (2013) LESION SIMULATING DISEASE1, ENHANCED DISEASE SUSCEPTIBILITY1, and PHYTOALEXIN DEFICIENT4 conditionally regulate cellular signaling homeostasis, photosynthesis, water use efficiency, and seed yield in Arabidopsis. Plant Physiology, 161, 1795-1805.
Wrobel, R.L., Matvienko, M. & Yoder, J.I. (2002) Heterologous expression and biochemical characterization of an NAD (P) H: quinone oxidoreductase from the hemiparasitic plant Triphysaria versicolor. Plant Physiology and Biochemistry, 40, 265-272.
Xu, J., Zhang, X., Jiang, Y., Fan, H., Li, J.X., Li, C. et al. (2021) A unique flavoenzyme operates in ubiquinone biosynthesis in photosynthesis-related eukaryotes. Science Advances, 7, eabl3594.
Yoo, S.D., Cho, Y.H. & Sheen, J. (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature Protocols, 2, 1565-1572.
Yu, G., Xie, Z., Chen, W., Xu, B. & Huang, B. (2022) Knock down of NON-YELLOW COLOURING 1-like gene or chlorophyllin application enhanced chlorophyll accumulation with antioxidant roles in suppressing heat-induced leaf senescence in perennial ryegrass. Journal of Experimental Botany, 73, 429-444.
Zhang, J., Li, H., Huang, X., Xing, J., Yao, J., Yin, T. et al. (2022) STAYGREEN-mediated chlorophyll a catabolism is critical for photosystem stability during heat-induced leaf senescence in perennial ryegrass. Plant, Cell & Environment, 45, 1412-1427.
Zhang, X., Xu, Y. & Huang, B. (2019) Lipidomic reprogramming associated with drought stress priming-enhanced heat tolerance in tall fescue (Festuca arundinacea). Plant, Cell & Environment, 42, 947-958.
Zou, X., Zhang, Y., Zeng, X., Liu, T., Li, G., Dai, Y. et al. (2021) Molecular cloning and identification of NADPH cytochrome P450 reductase from Panax ginseng. Molecules, 26, 6654.

Auteurs

Bizhen Cheng (B)

College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.

Min Zhou (M)

College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.

Tao Tang (T)

College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.

Muhammad Jawad Hassan (MJ)

College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.

Jianzhen Zhou (J)

College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.

Meng Tan (M)

College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.

Zhou Li (Z)

College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.

Yan Peng (Y)

College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Animals Hemiptera Insect Proteins Phylogeny Insecticides
Psoriasis Humans Magnesium Zinc Trace Elements
Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins

Classifications MeSH