Tfs1, transcription elongation factor TFIIS, has an impact on chromosome segregation affected by pka1 deletion in Schizosaccharomyces pombe.


Journal

Current genetics
ISSN: 1432-0983
Titre abrégé: Curr Genet
Pays: United States
ID NLM: 8004904

Informations de publication

Date de publication:
Jun 2023
Historique:
received: 24 03 2023
accepted: 06 04 2023
revised: 05 04 2023
medline: 8 5 2023
pubmed: 14 4 2023
entrez: 13 4 2023
Statut: ppublish

Résumé

The cAMP-dependent protein kinase (PKA) pathway in Schizosaccharomyces pombe plays an important role in microtubule organization and chromosome segregation. Typically, loss of functional Pka1 induces sensitivity to the microtubule-destabilizing drug thiabendazole (TBZ) and chromosome mis-segregation. To determine the mechanism via which Pka1 is involved in these events, we explored the relevance of transcription factors by creating a double-deletion strain of pka1 and 102 individual genes encoding transcription factors. We found that rst2∆, tfs1∆, mca1∆, and moc3∆ suppressed the TBZ-sensitive phenotype of the pka1∆ strain, among which tfs1∆ was the strongest suppressor. All single mutants (rst2∆, tfs1∆, mca1∆, and moc3∆) showed a TBZ-tolerant phenotype. Tfs1 has two transcriptional domains (TFIIS and Zn finger domains), both of which contributed to the suppression of the pka1∆-induced TBZ-sensitive phenotype. pka1∆-induced chromosome mis-segregation was rescued by tfs1∆ in the presence of TBZ. tfs1 overexpression induced the TBZ-sensitive phenotype and a high frequency of chromosome mis-segregation, suggesting that the amount of Tfs1 must be strictly controlled. However, Tfs1-expression levels did not differ between the wild-type and pka1∆ strains, and the Tfs1-GFP protein was localized to the nucleus and cytoplasm in both strains, which excludes the direct regulation of expression and localization of Tfs1 by Pka1. Growth inhibition by TBZ in pka1∆ strains was notably rescued by double deletion of rst2 and tfs1 rather than single deletion of rst2 or tfs1, indicating that Rst2 and Tfs1 contribute independently to counteract TBZ toxicity. Our findings highlight Tfs1 as a key transcription factor for proper chromosome segregation.

Identifiants

pubmed: 37052630
doi: 10.1007/s00294-023-01268-0
pii: 10.1007/s00294-023-01268-0
doi:

Substances chimiques

Transcription Factors 0
transcription factor S-II 0
Schizosaccharomyces pombe Proteins 0
Peptide Elongation Factors 0
RST2 protein, S pombe 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

115-125

Subventions

Organisme : JSPS KAKENHI Grant
ID : JP19K222831
Organisme : JSPS KAKENHI Grant
ID : JP18K05438

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Basi G, Schmid E, Maundrell K (1993) TATA box mutations in the Schizosaccharomyces pombe nmt1 promoter affect transcription efficiency but not the transcription start point or thiamine repressibility. Gene 123:131–136. https://doi.org/10.1016/0378-1119(93)90552-e
doi: 10.1016/0378-1119(93)90552-e pubmed: 8422997
Beaudoin J, Ioannoni R, Normant V, Labbe S (2018) A role for the transcription factor Mca1 in activating the meiosis-specific copper transporter Mfc1. PLoS One 13:e0201861. https://doi.org/10.1371/journal.pone.0201861
doi: 10.1371/journal.pone.0201861 pubmed: 30086160 pmcid: 6080790
Bernard P, Maure J-F, Partridge JF et al (2001) Requirement of heterochromatin for cohesion at centromeres. Science 294:2539–2542. https://doi.org/10.1126/science.1064027
doi: 10.1126/science.1064027 pubmed: 11598266
Byrne SM, Hoffman CS (1993) Six git genes encode a glucose-induced adenylate cyclase activation pathway in the fission yeast Schizosaccharomyces pombe. J Cell Sci 105:1095–1100. https://doi.org/10.1242/jcs.105.4.1095
doi: 10.1242/jcs.105.4.1095 pubmed: 8227198
Cermakova K, Veverka V, Hodges HC (2023) The TFIIS N-terminal domain (TND): a transcription assembly module at the interface of order and disorder. Biochem Soc Trans 51:125–135. https://doi.org/10.1042/BST20220342
doi: 10.1042/BST20220342 pubmed: 36651856 pmcid: 9987994
DeVoti J, Seydoux G, Beach D, McLeod M (1991) Interaction between ran1
doi: 10.1002/j.1460-2075.1991.tb04945.x pubmed: 1657594 pmcid: 453112
Ekwall K, Thon G (2017) Spore analysis and tetrad dissection of Schizosaccharomyces pombe. Cold Spring Harb Protoc 2017:pdb prot091710. https://doi.org/10.1101/pdb.prot091710
doi: 10.1101/pdb.prot091710 pubmed: 28679703
Forsburg SL (1993) Comparison of Schizosaccharomyces pombe expression systems. Nucleic Acids Res 21:2955–2956
doi: 10.1093/nar/21.12.2955 pubmed: 8332516 pmcid: 309706
Goldar MM, Jeong HT, Tanaka K et al (2005) Moc3, a novel Zn finger type protein involved in sexual development, ascus formation, and stress response of Schizosaccharomyces pombe. Curr Genet 48:345–355. https://doi.org/10.1007/s00294-005-0028-z
doi: 10.1007/s00294-005-0028-z pubmed: 16273369
Gupta DR, Paul SK, Oowatari Y et al (2011a) Complex formation, phosphorylation, and localization of protein kinase A of Schizosaccharomyces pombe upon glucose starvation. Biosci Biotechnol Biochem 75:1456–1465. https://doi.org/10.1271/bbb.110125
doi: 10.1271/bbb.110125 pubmed: 21869531
Gupta DR, Paul SK, Oowatari Y et al (2011b) Multistep regulation of protein kinase A in its localization, phosphorylation and binding with a regulatory subunit in fission yeast. Curr Genet 57:353–365. https://doi.org/10.1007/s00294-011-0354-2
doi: 10.1007/s00294-011-0354-2 pubmed: 21879336
Hálová L, Du W, Kirkham S et al (2013) Phosphorylation of the TOR ATP binding domain by AGC kinase constitutes a novel mode of TOR inhibition. J Cell Biol 203:595–604. https://doi.org/10.1083/jcb.201305103
doi: 10.1083/jcb.201305103 pubmed: 24247430 pmcid: 3840928
Hayashi I, Ikura M (2003) Crystal structure of the amino-terminal microtubule-binding domain of end-binding protein 1 (EB1). J Biol Chem 278:36430–36434. https://doi.org/10.1074/jbc.M305773200
doi: 10.1074/jbc.M305773200 pubmed: 12857735
Higuchi T, Watanabe Y, Yamamoto M (2002) Protein kinase A regulates sexual development and gluconeogenesis through phosphorylation of the Zn finger transcriptional activator Rst2p in fission yeast. Mol Cell Biol 22:1–11. https://doi.org/10.1128/MCB.22.1.1-11.2002
doi: 10.1128/MCB.22.1.1-11.2002 pubmed: 11739717 pmcid: 134213
Inamura S-I, Tanabe T, Kawamukai M, Matsuo Y (2021) Expression of Mug14 is regulated by the transcription factor Rst2 through the cAMP-dependent protein kinase pathway in Schizosaccharomyces pombe. Curr Genet 67:807–821. https://doi.org/10.1007/s00294-021-01194-z
doi: 10.1007/s00294-021-01194-z pubmed: 34086083
Izban MG, Luse DS (1992) The RNA polymerase II ternary complex cleaves the nascent transcript in a 3’––5’ direction in the presence of elongation factor SII. Genes Dev 6:1342–1356. https://doi.org/10.1101/gad.6.7.1342
doi: 10.1101/gad.6.7.1342 pubmed: 1378419
Kawamukai M, Ferguson K, Wigler M, Young D (1991) Genetic and biochemical analysis of the adenylyl cyclase of Schizosaccharomyces pombe. Cell Regul 2:155–164. https://doi.org/10.1091/mbc.2.2.155
doi: 10.1091/mbc.2.2.155 pubmed: 1863602 pmcid: 361733
Kettenbach AN, Deng L, Wu Y et al (2015) Quantitative phosphoproteomics reveals pathways for coordination of cell growth and division by the conserved fission yeast kinase Pom1. Mol Cell Proteomics 14:1275–1287. https://doi.org/10.1074/mcp.M114.045245
doi: 10.1074/mcp.M114.045245 pubmed: 25720772 pmcid: 4424399
Kettenberger H, Armache KJ, Cramer P (2003) Architecture of the RNA polymerase II-TFIIS complex and implications for mRNA cleavage. Cell 114:347–357. https://doi.org/10.1016/s0092-8674(03)00598-1
doi: 10.1016/s0092-8674(03)00598-1 pubmed: 12914699
Kim B, Nesvizhskii AI, Rani PG et al (2007) The transcription elongation factor TFIIS is a component of RNA polymerase II preinitiation complexes. Proc Natl Acad Sci U A 104:16068–16073. https://doi.org/10.1073/pnas.0704573104
doi: 10.1073/pnas.0704573104
Kim DU, Hayles J, Kim D et al (2010) Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe. Nat Biotechnol 28:617–623. https://doi.org/10.1038/nbt.1628
doi: 10.1038/nbt.1628 pubmed: 20473289 pmcid: 3962850
Klug A (1999) Zinc finger peptides for the regulation of gene expression. J Mol Biol 293:215–218. https://doi.org/10.1006/jmbi.1999.3007
doi: 10.1006/jmbi.1999.3007 pubmed: 10529348
Koike A, Kato T, Sugiura R et al (2012) Genetic screening for regulators of Prz1, a transcriptional factor acting downstream of calcineurin in fission yeast. J Biol Chem 287:19294–19303. https://doi.org/10.1074/jbc.M111.310615
doi: 10.1074/jbc.M111.310615 pubmed: 22496451 pmcid: 3365961
Krawchuk MD, Wahls WP (1999) High-efficiency gene targeting in Schizosaccharomyces pombe using a modular, PCR-based approach with long tracts of flanking homology. Yeast 15:1419–1427. https://doi.org/10.1002/(SICI)1097-0061(19990930)15:13%3c1419::AID-YEA466%3e3.0.CO;2-Q
doi: 10.1002/(SICI)1097-0061(19990930)15:13<1419::AID-YEA466>3.0.CO;2-Q pubmed: 10509024
Lock A, Rutherford K, Harris MA, Wood V (2018) PomBase: The scientific resource for fission yeast. Methods Mol Biol 1757:49–68. https://doi.org/10.1007/978-1-4939-7737-6_4
doi: 10.1007/978-1-4939-7737-6_4 pubmed: 29761456 pmcid: 6440643
Maeda T, Watanabe Y, Kunitomo H, Yamamoto M (1994) Cloning of the pka1 gene encoding the catalytic subunit of the cAMP-dependent protein kinase in Schizosaccharomyces pombe. J Biol Chem 269:9632–9637. https://doi.org/10.1016/S0021-9258(17)36928-4
doi: 10.1016/S0021-9258(17)36928-4 pubmed: 8144551
Matsuo Y, Kawamukai M (2017) cAMP-dependent protein kinase involves calcium tolerance through the regulation of Prz1 in Schizosaccharomyces pombe. Biosci Biotechnol Biochem 81:231–241. https://doi.org/10.1080/09168451.2016.1246171
doi: 10.1080/09168451.2016.1246171 pubmed: 27756188
Matsuo Y, Tanaka K, Nakagawa T et al (2004) Genetic analysis of chs1
doi: 10.1271/bbb.68.1489 pubmed: 15277753
Matsuo Y, McInnis B, Marcus S (2008) Regulation of the subcellular localization of cyclic AMP-dependent protein kinase in response to physiological stresses and sexual differentiation in the fission yeast Schizosaccharomyces pombe. Eukaryot Cell 7:1450–1459. https://doi.org/10.1128/EC.00168-08
doi: 10.1128/EC.00168-08 pubmed: 18621924 pmcid: 2547071
Matsuo Y, Marcus S, Kawamukai M (2022) Synergistic roles of the phospholipase B homolog Plb1 and the cAMP-dependent protein kinase Pka1 in the hypertonic stress response of Schizosaccharomyces pombe. Curr Genet 68:661–674. https://doi.org/10.1007/s00294-022-01253-z
doi: 10.1007/s00294-022-01253-z pubmed: 36112198
McInnis B, Mitchell J, Marcus S (2010) Phosphorylation of the protein kinase A catalytic subunit is induced by cyclic AMP deficiency and physiological stresses in the fission yeast, Schizosaccharomyces pombe. Biochem Biophys Res Commun 399:665–669. https://doi.org/10.1016/j.bbrc.2010.07.139
doi: 10.1016/j.bbrc.2010.07.139 pubmed: 20691155 pmcid: 2941774
Morozumi Y, Shiozaki K (2021) Conserved and divergent mechanisms that control TORC1 in yeasts and mammals. Genes 12:88. https://doi.org/10.3390/genes12010088
doi: 10.3390/genes12010088 pubmed: 33445779 pmcid: 7828246
Murray JM, Watson AT, Carr AM (2016) Transformation of Schizosaccharomyces pombe: lithium acetate/ dimethyl sulfoxide procedure. Cold Spring Harb Protoc 2016:pdb prot090969. https://doi.org/10.1101/pdb.prot090969
doi: 10.1101/pdb.prot090969 pubmed: 27037075
Nakagawa T, Okita AK (2019) Transcriptional silencing of centromere repeats by heterochromatin safeguards chromosome integrity. Curr Genet 65:1089–1098. https://doi.org/10.1007/s00294-019-00975-x
doi: 10.1007/s00294-019-00975-x pubmed: 30997531
Nishida I, Yokomi K, Hosono K et al (2019) CoQ
doi: 10.1007/s00253-019-09843-7 pubmed: 31030285
Niwa O, Matsumoto T, Yanagida M (1986) Construction of a minichromosome by deletion and its mitotic and meiotic behavior in fission yeast. Mol Gen Genet 203:397–405. https://doi.org/10.1007/Bf00422063
doi: 10.1007/Bf00422063
Okita AK, Zafar F, Su J et al (2019) Heterochromatin suppresses gross chromosomal rearrangements at centromeres by repressing Tfs1/TFIIS-dependent transcription. Commun Biol 2:17. https://doi.org/10.1038/s42003-018-0251-z
doi: 10.1038/s42003-018-0251-z pubmed: 30652128 pmcid: 6329695
Petersen J, Russell P (2016) Growth and the environment of Schizosaccharomyces pombe. Cold Spring Harb Protoc 2016:pdb top079764. https://doi.org/10.1101/pdb.top079764
doi: 10.1101/pdb.top079764 pubmed: 26933253 pmcid: 5526333
Roux AE, Quissac A, Chartrand P et al (2006) Regulation of chronological aging in Schizosaccharomyces pombe by the protein kinases Pka1 and Sck2. Aging Cell 5:345–357. https://doi.org/10.1111/j.1474-9726.2006.00225.x
doi: 10.1111/j.1474-9726.2006.00225.x pubmed: 16822282
Sadeghi L, Prasad P, Ekwall K et al (2015) The Paf1 complex factors Leo1 and Paf1 promote local histone turnover to modulate chromatin states in fission yeast. EMBO Rep 16:1673–1687. https://doi.org/10.15252/embr.201541214
doi: 10.15252/embr.201541214 pubmed: 26518661 pmcid: 4687421
Saitoh S, Mori A, Uehara L et al (2015) Mechanisms of expression and translocation of major fission yeast glucose transporters regulated by CaMKK/phosphatases, nuclear shuttling, and TOR. Mol Biol Cell 26:373–386. https://doi.org/10.1091/mbc.E14-11-1503
doi: 10.1091/mbc.E14-11-1503 pubmed: 25411338 pmcid: 4294683
Shieh JC, Wilkinson MG, Buck V et al (1997) The Mcs4 response regulator coordinately controls the stress-activated Wak1-Wis1-Sty1 MAP kinase pathway and fission yeast cell cycle. Genes Dev 11:1008–1022. https://doi.org/10.1101/gad.11.8.1008
doi: 10.1101/gad.11.8.1008 pubmed: 9136929
Shieh J-C, Wilkinson MG, Millar JBA (1998) The Win1 mitotic regulator is a component of the fission yeast stress-activated Sty1 MAPK pathway. Mol Biol Cell 9:311–322. https://doi.org/10.1091/mbc.9.2.311
doi: 10.1091/mbc.9.2.311 pubmed: 9450957 pmcid: 25255
Shiozaki K, Russell P (1996) Conjugation, meiosis, and the osmotic stress response are regulated by Spc1 kinase through Atf1 transcription factor in fission yeast. Genes Dev 10:2276–2288. https://doi.org/10.1101/gad.10.18.2276
doi: 10.1101/gad.10.18.2276 pubmed: 8824587
Stiefel J, Wang L, Kelly DA et al (2004) Suppressors of an adenylate cyclase deletion in the fission yeast Schizosaccharomyces pombe. Eukaryot Cell 3:610–619. https://doi.org/10.1128/EC.3.3.610-619.2004
doi: 10.1128/EC.3.3.610-619.2004 pubmed: 15189983 pmcid: 420129
Takenaka K, Tanabe T, Kawamukai M, Matsuo Y (2018) Overexpression of the transcription factor Rst2 in Schizosaccharomyces pombe indicates growth defect, mitotic defects, and microtubule disorder. Biosci Biotechnol Biochem 82:247–257. https://doi.org/10.1080/09168451.2017.1415126
doi: 10.1080/09168451.2017.1415126 pubmed: 29316864
Tanabe T, Yamaga M, Kawamukai M, Matsuo Y (2019) Mal3 is a multi-copy suppressor of the sensitivity to microtubule-depolymerizing drugs and chromosome mis-segregation in a fission yeast pka1 mutant. PloS One 14:e0214803. https://doi.org/10.1371/journal.pone.0214803
doi: 10.1371/journal.pone.0214803 pubmed: 30973898 pmcid: 6459531
Tanabe T, Kawamukai M, Matsuo Y (2020) Glucose limitation and pka1 deletion rescue aberrant mitotic spindle formation induced by Mal3 overexpression in Schizosaccharomyces pombe. Biosci Biotechnol Biochem 84:1667–1680. https://doi.org/10.1080/09168451.2020.1763157
doi: 10.1080/09168451.2020.1763157 pubmed: 32441227
Wilkinson MG, Samuels M, Takeda T et al (1996) The Atf1 transcription factor is a target for the Sty1 stress-activated MAP kinase pathway in fission yeast. Genes Dev 10:2289–2301. https://doi.org/10.1101/gad.10.18.2289
doi: 10.1101/gad.10.18.2289 pubmed: 8824588
Wu SY, McLeod M (1995) The sak1
doi: 10.1128/MCB.15.3.1479 pubmed: 7862141 pmcid: 230372
Yamagishi Y, Yang CH, Tanno Y, Watanabe Y (2012) MPS1/Mph1 phosphorylates the kinetochore protein KNL1/Spc7 to recruit SAC components. Nat Cell Biol 14:746–752. https://doi.org/10.1038/ncb2515
doi: 10.1038/ncb2515 pubmed: 22660415
Yamamoto A, Hiraoka Y (2003) Monopolar spindle attachment of sister chromatids is ensured by two distinct mechanisms at the first meiotic division in fission yeast. EMBO J 22:2284–2296. https://doi.org/10.1093/emboj/cdg222
doi: 10.1093/emboj/cdg222 pubmed: 12727894 pmcid: 156094

Auteurs

Kouhei Takenaka (K)

Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Matsue, 690-8504, Japan.

Shiho Nishioka (S)

Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Matsue, 690-8504, Japan.

Yuki Nishida (Y)

Graduate School of Natural Science and Technology, Shimane University, Matsue, 690-8504, Japan.

Makoto Kawamukai (M)

Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Matsue, 690-8504, Japan.
Graduate School of Natural Science and Technology, Shimane University, Matsue, 690-8504, Japan.
Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, 690-8504, Japan.

Yasuhiro Matsuo (Y)

Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Matsue, 690-8504, Japan. ymatsuo@life.shimane-u.ac.jp.
Graduate School of Natural Science and Technology, Shimane University, Matsue, 690-8504, Japan. ymatsuo@life.shimane-u.ac.jp.
Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, 690-8504, Japan. ymatsuo@life.shimane-u.ac.jp.

Articles similaires

Meiosis Schizosaccharomyces Schizosaccharomyces pombe Proteins Spores, Fungal
Triticum Transcription Factors Gene Expression Regulation, Plant Plant Proteins Salt Stress
Schizosaccharomyces Meiosis Schizosaccharomyces pombe Proteins Mitosis Epigenesis, Genetic
Animals Humans Mice Neoplasms Tumor Microenvironment

Classifications MeSH