A Commercial Nonbinding Surface Effectively Reduces Fibrinogen Adsorption but Does Not Prevent Platelet Adhesion to Fibrinogen.


Journal

Macromolecular bioscience
ISSN: 1616-5195
Titre abrégé: Macromol Biosci
Pays: Germany
ID NLM: 101135941

Informations de publication

Date de publication:
07 2023
Historique:
revised: 14 04 2023
received: 13 02 2023
medline: 17 7 2023
pubmed: 21 4 2023
entrez: 21 04 2023
Statut: ppublish

Résumé

A commercial nonbinding surface effectively prevents protein adsorption; however, the platelet phenotype on this surface has yet to be defined. This study evaluates platelet adhesion and adsorption of several plasma/extracellular matrix (ECM) proteins to the nonbinding surface compared to other commonly used nontreated and high-binding surfaces. Platelet adhesion to uncoated microplates and those coated with fibrinogen or collagen is quantified by colorimetric assay. The binding capacity of the examined surfaces for plasma/ECM proteins is evaluated by measuring the relative and absolute protein adsorption. Compared to other surfaces, the nonbinding surface effectively prevents platelet adsorption, i.e. by 61-93% (Enzyme-Linked Immunosorbent Assay, ELISA), and reduces platelet adhesion, i.e. by 92%, when not coated with any protein. The nonbinding surface also decreases platelet deposition on collagen (up to 31%), but not fibrinogen. The nonbinding surface seems to be more of a low-fouling than nonfouling material, as it is able to reduce fibrinogen adsorption but not prevent platelet adhesion to fibrinogen. This feature should be considered when using the nonbinding surface for in vitro platelet testing.

Identifiants

pubmed: 37084188
doi: 10.1002/mabi.202300052
doi:

Substances chimiques

Fibrinogen 9001-32-5
Hemostatics 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e2300052

Informations de copyright

© 2023 Wiley-VCH GmbH.

Références

Explore Our World of Microplates: Microplate Selection Guide, Greiner Bio-One Inc., Frickenhausen, Germany 2022.
P. Bellavite, G. Andrioli, P. Guzzo, P. Arigliano, S. Chirumbolo, F. Manzato, C. Santonastaso, Anal. Biochem. 1994, 216, 444.
A. Martins Lima, D. S. Saint Auguste, F. Cuenot, A. C. Martins Cavaco, T. Lachkar, C. M. E. Khawand, R. A. Fraga-Silva, N. Stergiopulos, Int. J. Mol. Sci. 2020, 21, 6539.
M. Vanickova, J. Suttnar, J. E. Dyr, Platelets 2006, 17, 470.
J. P. Fägerstam, A. K. Östberg, A. C. Eriksson, S. G. Fransson, P. A. Whiss, Br. J. Radiol. 2010, 83, 401.
M. Johansson, A. C. Eriksson, C. J. Östgren, P. A. Whiss, Thromb. J. 2021, 19, 40.
S. Urieli-Shoval, G. Shubinsky, R. P. Linke, M. Fridkin, I. Tabi, Y. Matzner, Blood 2002, 99, 1224.
M. Bernard, E. Jubeli, J. Bakar, L. Tortolano, J. Saunier, N. Yagoubi, J. Biomed. Mater. Res., Part A 2017, 105, 3333.
S. Braune, G. M. Fröhlich, A. Lendlein, F. Jung, Clin. Hemorheol. Microcirc. 2016, 61, 681.
M. S. Lord, B. Cheng, S. J. Mccarthy, M. Jung, J. M. Whitelock, Biomaterials 2011, 32, 6655.
L. N. Madike, M. Pillay, K. C. Popat, RSC Adv. 2021, 11, 30455.
M. Weber, H. Steinle, S. Golombek, L. Hann, C. Schlensak, H. P. Wendel, M. Avci-Adali, Front. Bioeng. Biotechnol. 2018, 6, 99.
Q. Wei, T. Becherer, S. Angioletti-Uberti, J. Dzubiella, C. Wischke, A. T. Neffe, A. Lendlein, M. Ballauff, R. Haag, Angew. Chem., Int. Ed. Engl. 2014, 53, 8004.
A. S. Hoffman, J. Biomater. Sci., Polym. Ed. 1999, 10, 1011.
T. A. Horbett, J. Biomed. Mater. Res., Part A 2018, 106, 2777.
Y. Fang, A. G. Frutos, J. Lahiri, D. Bookbinder, D. Chow, A. Tanner, Q. Zong, in Frontiers in Biochip Technology (Eds: W. L. Xing, J. Cheng), Springer, Boston, USA 2006.
D. Bookbinder, D. Chow, Binding Comparison of Polymer Surfaces: Introducing Corning Nonbinding Surface (NBS) Microplates. Application Report: Innovative Techniques in Drug Discovery, Corning Inc., Corning, USA 2007.
T. Fukazawa, Y. Yamazaki, Y. Miyamoto, J. Pharmacol. Toxicol. Methods 2010, 61, 329.
A. Kavanagh, S. Ramu, Y. Gong, M. A. Cooper, M. A. T. Blaskovich, Antimicrob. Agents Chemother. 2019, 63, e01760.
Z. M. Ruggeri, G. L. Mendolicchio, Circ. Res. 2007, 100, 1673.
A. C. Eriksson, P. A. Whiss, J. Pharmacol. Toxicol. Methods 2005, 52, 356.
T. Chandy, D. L. Mooradian, G. H. Rao, J. Biomater. Appl. 1998, 13, 46.
B. Lyman, L. Rosenberg, S. Karpatkin, J. Clin. Invest. 1971, 50, 1854.
D. R. Schmidt, H. Waldeck, W. J. Kao, in Biological Interactions on Materials Surfaces (Eds: D. Puleo, R. Bizios), Springer, New York, NY 2009.
R. A. Latour, Colloids Surf., B 2020, 191, 110992.
Forum No 9: Technical Notes & Applications for Laboratory Work. Microplates for Enzyme-Linked Immunosorbent Assays (ELISA), Greiner Bio-One Inc., Frickenhausen, Germany 2022.
A. B. Bergeron, C. J. Bortz, A. Rossi, Corning Medium and High Binding ELISA Microplates for Select Target Size Binding Assays. Application Note, Corning Inc., Kennebunk, USA 2018.
J. Nowak, C. Watala, M. Boncler, Blood Coagul. Fibrinolysis 2014, 25, 52.
B. Sivaraman, R. A. Latour, Biomaterials 2010, 31, 832.
W. B. Tsai, J. M. Grunkemeier, T. A. Horbett, J. Biomed. Mater. Res. 1999, 44, 130.
C. Zhao, L. Li, J. Zheng, Langmuir 2010, 26, 17375.
M. Cattaneo, C. Cerletti, P. Harrison, C. P. Hayward, D. Kenny, D. Nugent, P. Nurden, A. K. Rao, A. H. Schmaier, S. P. Watson, F. Lussana, M. T. Pugliano, A. D. Michelson, J. Thromb. Haemost. 2013, 11, 1183.
J. P. Cazenave, P. Ohlmann, D. Cassel, A. Eckly, B. Hechler, C. Gachet, Methods Mol. Biol. 2004, 272, 13.
S. Braune, S. Zhou, B. Groth, F. Jung, Clin. Hemorheol. Microcirc. 2015, 61, 225.
Y. A. Gao, D. Hoover, Performance Advantage of Corning NBS Microplates in Homogeneous Biochemical Assays, Corning Inc., Kennebunk, USA 2007.
A. Tanner, Corning Nonbinding Surface (NBS) Microplates for Fluorescent HTS Assays. Application Report: Innovative Techniques in Drug Discovery, Corning Inc., Kennebunk, USA 2007.
J. Wzorek, R. Bednarek, C. Watala, M. Boncler, Biochem. Pharmacol. 2020, 174, 113827.
J. Gibbs, M. Vessels, M. Rothenberg, Optimizing the Immobilization of Protein and Other Biomolecules for ELISA Assays. Application Note, Corning Inc., Kennebunk, USA 2017.
M. Amiji, H. Park, K. Park, J. Biomater. Sci., Polym. Ed. 1992, 3, 375.
K. Sorensen, U. Brodbeck, J. Immunol. Methods 1986, 95, 291.

Auteurs

Magdalena Boncler (M)

Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, ul. Mazowiecka 6/8, 92-215, Lodz, Poland.

Articles similaires

Protein Processing, Post-Translational Humans Blood Coagulation Fibrin Fibrinogen

Characterization of 3D printed composite for final dental restorations.

Lucas Eigi Borges Tanaka, Camila da Silva Rodrigues, Manassés Tércio Vieira Grangeiro et al.
1.00
Composite Resins Materials Testing Printing, Three-Dimensional Surface Properties Flexural Strength
Ultraviolet Rays Disinfection Ultrasonography Surface Properties Humans
Anthraquinones Kinetics Water Purification Adsorption Thermodynamics

Classifications MeSH