Optimizing Sparse Testing for Genomic Prediction of Plant Breeding Crops.


Journal

Genes
ISSN: 2073-4425
Titre abrégé: Genes (Basel)
Pays: Switzerland
ID NLM: 101551097

Informations de publication

Date de publication:
17 04 2023
Historique:
received: 01 03 2023
revised: 07 04 2023
accepted: 13 04 2023
medline: 1 5 2023
pubmed: 28 4 2023
entrez: 28 4 2023
Statut: epublish

Résumé

While sparse testing methods have been proposed by researchers to improve the efficiency of genomic selection (GS) in breeding programs, there are several factors that can hinder this. In this research, we evaluated four methods (M1-M4) for sparse testing allocation of lines to environments under multi-environmental trails for genomic prediction of unobserved lines. The sparse testing methods described in this study are applied in a two-stage analysis to build the genomic training and testing sets in a strategy that allows each location or environment to evaluate only a subset of all genotypes rather than all of them. To ensure a valid implementation, the sparse testing methods presented here require BLUEs (or BLUPs) of the lines to be computed at the first stage using an appropriate experimental design and statistical analyses in each location (or environment). The evaluation of the four cultivar allocation methods to environments of the second stage was done with four data sets (two large and two small) under a multi-trait and uni-trait framework. We found that the multi-trait model produced better genomic prediction (GP) accuracy than the uni-trait model and that methods M3 and M4 were slightly better than methods M1 and M2 for the allocation of lines to environments. Some of the most important findings, however, were that even under a scenario where we used a training-testing relation of 15-85%, the prediction accuracy of the four methods barely decreased. This indicates that genomic sparse testing methods for data sets under these scenarios can save considerable operational and financial resources with only a small loss in precision, which can be shown in our cost-benefit analysis.

Identifiants

pubmed: 37107685
pii: genes14040927
doi: 10.3390/genes14040927
pmc: PMC10137724
pii:
doi:

Types de publication

Journal Article Research Support, U.S. Gov't, Non-P.H.S. Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Références

Trends Genet. 2011 Aug;27(8):323-31
pubmed: 21684621
Nat Genet. 2015 Jan;47(1):88-91
pubmed: 25436857
Am J Hum Genet. 2009 Sep;85(3):309-20
pubmed: 19733727
Front Plant Sci. 2016 Nov 22;7:1666
pubmed: 27920780
Trends Plant Sci. 2017 Nov;22(11):961-975
pubmed: 28965742
Plant Genome. 2022 Mar;15(1):e20194
pubmed: 35170851
Genetics. 2001 Apr;157(4):1819-29
pubmed: 11290733
Theor Appl Genet. 2015 Jan;128(1):55-72
pubmed: 25326722
G3 (Bethesda). 2020 Aug 5;10(8):2725-2739
pubmed: 32527748
Plant Genome. 2017 Nov;10(3):
pubmed: 29293806
Hum Mol Genet. 2002 Oct 1;11(20):2463-8
pubmed: 12351582
Plant Genome. 2021 Nov;14(3):e20151
pubmed: 34510790
J Dairy Sci. 2008 Nov;91(11):4414-23
pubmed: 18946147
Genetics. 2014 Oct;198(2):483-95
pubmed: 25009151

Auteurs

Osval A Montesinos-López (OA)

Facultad de Telemática, Universidad de Colima, Colima 28040, Mexico.

Carolina Saint Pierre (C)

International Maize and Wheat Improvement Center (CIMMYT), Km 45, Carretera Mexico-Veracruz, El Batan, Texcoco 56237, Mexico.

Salvador A Gezan (SA)

VSN International, Hemel Hempstead HP2 4TP, UK.

Alison R Bentley (AR)

International Maize and Wheat Improvement Center (CIMMYT), Km 45, Carretera Mexico-Veracruz, El Batan, Texcoco 56237, Mexico.

Brandon A Mosqueda-González (BA)

Centro de Investigación en Computación (CIC), Instituto Politécnico Nacional (IPN), Mexico City 07738, Mexico.

Abelardo Montesinos-López (A)

Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Guadalajara 44430, Mexico.

Fred van Eeuwijk (F)

Department of Plant Science Mathematical and Statistical Methods-Biometrics, P.O. Box 16, 6700AA Wageningen, The Netherlands.

Yoseph Beyene (Y)

International Maize and Wheat Improvement Center (CIMMYT), Km 45, Carretera Mexico-Veracruz, El Batan, Texcoco 56237, Mexico.

Manje Gowda (M)

International Maize and Wheat Improvement Center (CIMMYT), Km 45, Carretera Mexico-Veracruz, El Batan, Texcoco 56237, Mexico.

Keith Gardner (K)

International Maize and Wheat Improvement Center (CIMMYT), Km 45, Carretera Mexico-Veracruz, El Batan, Texcoco 56237, Mexico.

Guillermo S Gerard (GS)

International Maize and Wheat Improvement Center (CIMMYT), Km 45, Carretera Mexico-Veracruz, El Batan, Texcoco 56237, Mexico.

Leonardo Crespo-Herrera (L)

International Maize and Wheat Improvement Center (CIMMYT), Km 45, Carretera Mexico-Veracruz, El Batan, Texcoco 56237, Mexico.

José Crossa (J)

International Maize and Wheat Improvement Center (CIMMYT), Km 45, Carretera Mexico-Veracruz, El Batan, Texcoco 56237, Mexico.
Colegio de Postgraduados, Montecillos 56230, Mexico.

Articles similaires

Coal Metagenome Phylogeny Bacteria Genome, Bacterial
Animals Natural Killer T-Cells Mice Adipose Tissue Lipid Metabolism
Genome Size Genome, Plant Magnoliopsida Evolution, Molecular Arabidopsis
Genome, Bacterial Virulence Phylogeny Genomics Plant Diseases

Classifications MeSH