Screening for functional regulatory variants in open chromatin using GenIE-ATAC.


Journal

Nucleic acids research
ISSN: 1362-4962
Titre abrégé: Nucleic Acids Res
Pays: England
ID NLM: 0411011

Informations de publication

Date de publication:
23 06 2023
Historique:
accepted: 20 04 2023
revised: 29 03 2023
received: 09 02 2022
medline: 26 6 2023
pubmed: 1 5 2023
entrez: 1 5 2023
Statut: ppublish

Résumé

Understanding the effects of genetic variation in gene regulatory elements is crucial to interpreting genome function. This is particularly pertinent for the hundreds of thousands of disease-associated variants identified by GWAS, which frequently sit within gene regulatory elements but whose functional effects are often unknown. Current methods are limited in their scalability and ability to assay regulatory variants in their endogenous context, independently of other tightly linked variants. Here, we present a new medium-throughput screening system: genome engineering based interrogation of enhancers assay for transposase accessible chromatin (GenIE-ATAC), that measures the effect of individual variants on chromatin accessibility in their endogenous genomic and chromatin context. We employ this assay to screen for the effects of regulatory variants in human induced pluripotent stem cells, validating a subset of causal variants, and extend our software package (rgenie) to analyse these new data. We demonstrate that this methodology can be used to understand the impact of defined deletions and point mutations within transcription factor binding sites. We thus establish GenIE-ATAC as a method to screen for the effect of gene regulatory element variation, allowing identification and prioritisation of causal variants from GWAS for functional follow-up and understanding the mechanisms of regulatory element function.

Identifiants

pubmed: 37125635
pii: 7147498
doi: 10.1093/nar/gkad332
pmc: PMC10287956
doi:

Substances chimiques

Chromatin 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e64

Subventions

Organisme : Wellcome Trust
Pays : United Kingdom

Informations de copyright

© The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research.

Références

Front Genet. 2020 May 13;11:424
pubmed: 32477401
Nat Rev Genet. 2018 Aug;19(8):491-504
pubmed: 29844615
Nature. 2016 May 5;533(7601):95-9
pubmed: 27096366
Nat Genet. 2019 Oct;51(10):1486-1493
pubmed: 31548716
PLoS Comput Biol. 2017 Feb 24;13(2):e1005403
pubmed: 28234893
Nat Methods. 2015 Sep;12(9):823-6
pubmed: 26167643
Bioinformatics. 2011 Nov 1;27(21):2957-63
pubmed: 21903629
Nature. 2016 Apr 20;533(7603):420-4
pubmed: 27096365
Nat Genet. 2016 Feb;48(2):206-13
pubmed: 26656845
Science. 2012 Sep 7;337(6099):1190-5
pubmed: 22955828
Nat Methods. 2020 Nov;17(11):1083-1091
pubmed: 33046894
Genome Res. 2014 Dec;24(12):2033-40
pubmed: 25079858
Nucleic Acids Res. 2021 Jan 8;49(D1):D1311-D1320
pubmed: 33045747
Nat Genet. 2018 Jan;50(1):54-61
pubmed: 29229984
Genomics. 2015 Sep;106(3):159-164
pubmed: 26072433
Science. 2016 Nov 11;354(6313):769-773
pubmed: 27708057
Nat Genet. 2021 Sep;53(9):1290-1299
pubmed: 34493866
Mol Cell. 2020 Feb 20;77(4):688-708
pubmed: 32001106
Nature. 2019 Dec;576(7785):149-157
pubmed: 31634902
Cell Stem Cell. 2018 Aug 02;23(2):276-288.e8
pubmed: 30033119
Nucleic Acids Res. 2020 Dec 16;48(22):e131
pubmed: 33152068
Nat Methods. 2013 Dec;10(12):1213-8
pubmed: 24097267
Nucleic Acids Res. 2019 Jan 8;47(D1):D1005-D1012
pubmed: 30445434
Cell Rep. 2020 Aug 18;32(7):108029
pubmed: 32814038
Methods Mol Biol. 2019;1961:153-183
pubmed: 30912046
PLoS Genet. 2012;8(3):e1002599
pubmed: 22457641
Nat Genet. 2021 Mar;53(3):392-402
pubmed: 33589840
Stem Cell Reports. 2018 Oct 9;11(4):897-911
pubmed: 30245212
Nature. 2017 Sep 7;549(7670):111-115
pubmed: 28854172
Methods. 2019 Jul 15;164-165:18-28
pubmed: 31216442
Nat Genet. 2018 Mar;50(3):424-431
pubmed: 29379200
Methods Mol Biol. 2011;733:279-98
pubmed: 21431778
Nat Commun. 2020 Jan 24;11(1):485
pubmed: 31980609

Auteurs

Sarah Cooper (S)

Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
OpenTargets, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.

Jeremy Schwartzentruber (J)

Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
OpenTargets, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.

Eve L Coomber (EL)

Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.

Qianxin Wu (Q)

Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.

Andrew Bassett (A)

Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
OpenTargets, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C

Classifications MeSH