Changes in the expression pattern of OsWUS negatively regulate plant stature and panicle development in rice.
OsWUS
Plant Genetics and Genomics
dwarfism
gibberellic acid
panicle development
rice
Journal
G3 (Bethesda, Md.)
ISSN: 2160-1836
Titre abrégé: G3 (Bethesda)
Pays: England
ID NLM: 101566598
Informations de publication
Date de publication:
05 07 2023
05 07 2023
Historique:
received:
13
02
2023
accepted:
18
04
2023
medline:
6
7
2023
pubmed:
4
5
2023
entrez:
4
5
2023
Statut:
ppublish
Résumé
WUSCHEL (WUS) and WUSCHEL-RELATED HOMEOBOX (WOX) encode transcription factors and play important roles in regulating the formation and maintenance of shoot and floral meristems. OsWUS have distinct functions in meristem development with slightly tuned expression. However, the mechanisms regulating the specific expression of OsWUS need to be further explored. In this study, an abnormal expression mutant of OsWUS, called Dwarf and aberrant panicle 1 (Dap1) was used. In order to identify the causal gene in Dap1, high-efficiency thermal asymmetric interlaced (hiTAIL)-PCR and co-segregation analysis were performed. We surveyed the growth and yield traits in Dap1 and wild type. Changes in gene expression between Dap1 and wild type were determined by RNA-seq. The Dap1 mutant is due to the T-DNA inserted at 3,628-bp upstream of the translation start codon of OsWUS. Plant height, tiller numbers, panicle length, the number of grains per main panicle, and the number of secondary branches was significantly reduced in the Dap1 mutant. The expression of OsWUS was markedly increased in Dap1 mutant plants compared to the wild type, which might be due to a disruption in the genomic sequence integrity. Simultaneously, the expression levels of gibberellic acid-related genes and genes involved in panicle development were significantly changed in the Dap1 mutant. Our results suggest that OsWUS is a precise regulatory element, its specific spatio-temporal expression pattern is critical for its function, and both loss-of-function and gain-of-function mutations lead to abnormal plant growth.
Identifiants
pubmed: 37141284
pii: 7152385
doi: 10.1093/g3journal/jkad100
pmc: PMC10320761
pii:
doi:
Substances chimiques
Plant Proteins
0
Homeodomain Proteins
0
Transcription Factors
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© The Author(s) 2023. Published by Oxford University Press on behalf of The Genetics Society of America.
Déclaration de conflit d'intérêts
Conflicts of interest The author(s) declare no conflict of interest.
Références
Plant Cell. 2008 Oct;20(10):2603-18
pubmed: 18952778
Pharmacogenetics. 1996 Feb;6(1):1-42
pubmed: 8845856
Plant J. 2008 Apr;54(1):93-105
pubmed: 18182025
Plant Cell Physiol. 2006 Feb;47(2):181-91
pubmed: 16306061
Mol Plant. 2018 May 7;11(5):720-735
pubmed: 29524649
Cell. 2001 Jun 15;105(6):805-14
pubmed: 11440722
Plant J. 2020 Dec;104(6):1635-1647
pubmed: 33064890
G3 (Bethesda). 2016 Jul 07;6(7):2013-21
pubmed: 27194802
Gene. 2006 Nov 1;382:57-65
pubmed: 16919402
Nat Commun. 2021 Apr 22;12(1):2378
pubmed: 33888716
Mol Cells. 2019 May 31;42(5):406-417
pubmed: 31085810
Genes Dev. 2011 Oct 1;25(19):2025-30
pubmed: 21979915
Plant Cell. 2012 May;24(5):1848-59
pubmed: 22570445
Nat Genet. 2008 Jun;40(6):761-7
pubmed: 18454147
Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13839-44
pubmed: 10570159
Plant Mol Biol. 2004 Jul;55(5):687-700
pubmed: 15604710
J Genet Genomics. 2010 Jan;37(1):23-36
pubmed: 20171575
Nature. 2002 Apr 18;416(6882):701-2
pubmed: 11961544
Cell. 2001 Jun 15;105(6):793-803
pubmed: 11440721
Mol Plant. 2019 Aug 5;12(8):1090-1102
pubmed: 31048024
Development. 1996 Jan;122(1):87-96
pubmed: 8565856
Proc Natl Acad Sci U S A. 2019 Jul 9;116(28):14319-14324
pubmed: 31235564
Science. 2000 Jul 28;289(5479):617-9
pubmed: 10915624
Mol Biol Evol. 2006 Dec;23(12):2492-504
pubmed: 16987950
Mol Plant. 2021 Jul 5;14(7):1135-1148
pubmed: 33845208
Cell. 1998 Dec 11;95(6):805-15
pubmed: 9865698
New Phytol. 2020 Jan;225(2):974-984
pubmed: 31486529
Plant J. 2004 Jun;38(5):754-64
pubmed: 15144377
Plant J. 2002 Mar;29(6):743-50
pubmed: 12148532
Plant Physiol. 2009 Apr;149(4):1929-44
pubmed: 19218361
Plant Cell. 2015 Apr;27(4):1173-84
pubmed: 25841039
Plant Cell Physiol. 2000 Mar;41(3):251-7
pubmed: 10805587
BMC Genomics. 2007 Jul 18;8:242
pubmed: 17640358
Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):9043-8
pubmed: 12077303
New Phytol. 2022 Feb;233(4):1682-1700
pubmed: 34767634
Plant Mol Biol. 2015 May;88(1-2):85-99
pubmed: 25800365
PLoS One. 2014 Feb 03;9(2):e88068
pubmed: 24498428
J Genet Genomics. 2015 Feb 20;42(2):71-8
pubmed: 25697101
Curr Opin Plant Biol. 2005 Feb;8(1):77-85
pubmed: 15653404
Nucleic Acids Res. 1999 Jan 1;27(1):297-300
pubmed: 9847208
Plant J. 2009 May;58(4):592-605
pubmed: 19154200
Plant Cell. 2017 Jun;29(6):1373-1387
pubmed: 28576845
Plant J. 2013 Aug;75(3):403-16
pubmed: 23581288
PLoS One. 2011;6(11):e28069
pubmed: 22140509
Biotechniques. 2007 Nov;43(5):649-50, 652, 654 passim
pubmed: 18072594