Computational Modeling Analysis of Kinetics of Fumarate Reductase Activity and ROS Production during Reverse Electron Transfer in Mitochondrial Respiratory Complex II.
a tunnel diode behavior
complex II
computational model
fumarate reduction
reactive oxygen species (ROS)
succinate dehydrogenase (SDH)
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
05 May 2023
05 May 2023
Historique:
received:
02
04
2023
revised:
23
04
2023
accepted:
28
04
2023
medline:
15
5
2023
pubmed:
13
5
2023
entrez:
13
5
2023
Statut:
epublish
Résumé
Reverse electron transfer in mitochondrial complex II (CII) plays an important role in hypoxia/anoxia, in particular, in ischemia, when the blood supply to an organ is disrupted and oxygen is not available. A computational model of CII was developed in this work to facilitate the quantitative analysis of the kinetics of quinol-fumarate reduction as well as ROS production during reverse electron transfer in CII. The model consists of 20 ordinary differential equations and 7 moiety conservation equations. The parameter values were determined at which the kinetics of electron transfer in CII in both forward and reverse directions would be explained simultaneously. The possibility of the existence of the "tunnel diode" behavior in the reverse electron transfer in CII, where the driving force is QH
Identifiants
pubmed: 37175997
pii: ijms24098291
doi: 10.3390/ijms24098291
pmc: PMC10179487
pii:
doi:
Substances chimiques
respiratory complex II
0
Succinate Dehydrogenase
EC 1.3.99.1
Reactive Oxygen Species
0
Electron Transport Complex II
EC 1.3.5.1
Succinates
0
Fumarates
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Références
Proc Natl Acad Sci U S A. 2007 Nov 13;104(46):18007-12
pubmed: 17989224
J Biol Chem. 1976 Apr 10;251(7):2094-104
pubmed: 178655
Nature. 2014 Nov 20;515(7527):431-435
pubmed: 25383517
J Biol Chem. 2011 Apr 8;286(14):12756-65
pubmed: 21310949
Biochim Biophys Acta Bioenerg. 2017 Feb;1858(2):109-117
pubmed: 27810396
Int J Biochem Cell Biol. 2019 Oct;115:105580
pubmed: 31394174
Am J Physiol Heart Circ Physiol. 2005 Jun;288(6):H2986-94
pubmed: 15681709
Biochem J. 2009 Jan 1;417(1):1-13
pubmed: 19061483
Biochemistry. 2014 Mar 18;53(10):1637-46
pubmed: 24559074
Cell Rep. 2018 May 29;23(9):2617-2628
pubmed: 29847793
J Biol Chem. 1987 Jan 25;262(3):1137-43
pubmed: 3027080
Biochim Biophys Acta. 1993 Jan 8;1140(3):282-92
pubmed: 8417779
Front Physiol. 2020 Oct 16;11:557721
pubmed: 33178032
Acta Biochim Pol. 2010;57(4):431-4
pubmed: 21103454
Biophys J. 1997 Jun;72(6):2679-87
pubmed: 9168043
Int J Mol Sci. 2022 Dec 09;23(24):
pubmed: 36555239
J Biol Chem. 2020 Nov 6;295(45):15262-15279
pubmed: 32859750
Biochim Biophys Acta. 2015 Jun-Jul;1847(6-7):656-79
pubmed: 25868872
Biochim Biophys Acta. 1984 Jan 18;784(1):24-34
pubmed: 6691982
Nature. 1992 Mar 26;356(6367):361-2
pubmed: 1549182
Science. 2021 Dec 03;374(6572):1227-1237
pubmed: 34855504
Redox Biol. 2020 Oct;37:101630
pubmed: 32747163
J Biol Chem. 1981 Jun 10;256(11):5577-82
pubmed: 6263883
J Biol Chem. 2012 Aug 3;287(32):27255-64
pubmed: 22689576
Biochim Biophys Acta. 1997 Jun 13;1320(2):107-41
pubmed: 9210286
Photosynth Res. 2017 Sep;133(1-3):297-304
pubmed: 28405861
Photosynth Res. 2017 Nov;134(2):193-200
pubmed: 28831654
J Biol Chem. 1976 Apr 10;251(7):2105-9
pubmed: 178656
Biochim Biophys Acta. 1984 Apr 9;768(1):53-79
pubmed: 6322844
Biochim Biophys Acta. 2013 Oct;1827(10):1156-64
pubmed: 23800966